111 research outputs found

    Different Requirement for Wnt/β-Catenin Signaling in Limb Regeneration of Larval and Adult Xenopus

    Get PDF
    BACKGROUND:In limb regeneration of amphibians, the early steps leading to blastema formation are critical for the success of regeneration, and the initiation of regeneration in an adult limb requires the presence of nerves. Xenopus laevis tadpoles can completely regenerate an amputated limb at the early limb bud stage, and the metamorphosed young adult also regenerates a limb by a nerve-dependent process that results in a spike-like structure. Blockage of Wnt/β-catenin signaling inhibits the initiation of tadpole limb regeneration, but it remains unclear whether limb regeneration in young adults also requires Wnt/β-catenin signaling. METHODOLOGY/PRINCIPAL FINDINGS:We expressed heat-shock-inducible (hs) Dkk1, a Wnt antagonist, in transgenic Xenopus to block Wnt/β-catenin signaling during forelimb regeneration in young adults. hsDkk1 did not inhibit limb regeneration in any of the young adult frogs, though it suppressed Wnt-dependent expression of genes (fgf-8 and cyclin D1). When nerve supply to the limbs was partially removed, however, hsDkk1 expression blocked limb regeneration in young adult frogs. Conversely, activation of Wnt/β-catenin signaling by a GSK-3 inhibitor rescued failure of limb-spike regeneration in young adult frogs after total removal of nerve supply. CONCLUSIONS/SIGNIFICANCE:In contrast to its essential role in tadpole limb regeneration, our results suggest that Wnt/β-catenin signaling is not absolutely essential for limb regeneration in young adults. The different requirement for Wnt/β-catenin signaling in tadpoles and young adults appears to be due to the projection of nerve axons into the limb field. Our observations suggest that nerve-derived signals and Wnt/β-catenin signaling have redundant roles in the initiation of limb regeneration. Our results demonstrate for the first time the different mechanisms of limb regeneration initiation in limb buds (tadpoles) and developed limbs (young adults) with reference to nerve-derived signals and Wnt/β-catenin signaling

    The Homeobox Transcription Factor Barx2 Regulates Plasticity of Young Primary Myofibers

    Get PDF
    Adult mammalian muscle retains incredible plasticity. Muscle growth and repair involves the activation of undifferentiated myogenic precursors called satellite cells. In some circumstances, it has been proposed that existing myofibers may also cleave and produce a pool of proliferative cells that can re-differentiate into new fibers. Such myofiber dedifferentiation has been observed in the salamander blastema where it may occur in parallel with satellite cell activation. Moreover, ectopic expression of the homeodomain transcription factor Msx1 in differentiated C2C12 myotubes has been shown to induce their dedifferentiation. While it remains unclear whether dedifferentiation and redifferentiaton occurs endogenously in mammalian muscle, there is considerable interest in induced dedifferentiation as a possible regenerative tool.We previously showed that the homeobox protein Barx2 promotes myoblast differentiation. Here we report that ectopic expression of Barx2 in young immature myotubes derived from cell lines and primary mouse myoblasts, caused cleavage of the syncytium and downregulation of differentiation markers. Microinjection of Barx2 cDNA into immature myotubes derived from primary cells led to cleavage and formation of mononucleated cells that were able to proliferate. However, injection of Barx2 cDNA into mature myotubes did not cause cleavage. Barx2 expression in C2C12 myotubes increased the expression of cyclin D1, which may promote cell cycle re-entry. We also observed differential muscle gene regulation by Barx2 at early and late stages of muscle differentiation which may be due to differential recruitment of transcriptional activator or repressor complexes to muscle specific genes by Barx2.We show that Barx2 regulates plasticity of immature myofibers and might act as a molecular switch controlling cell differentiation and proliferation

    Solution Structure and Phylogenetics of Prod1, a Member of the Three-Finger Protein Superfamily Implicated in Salamander Limb Regeneration

    Get PDF
    Prod1 is a cell-surface molecule of the three-finger protein (TFP) superfamily involved in the specification of newt limb PD identity. The TFP superfamily is a highly diverse group of metazoan proteins that includes snake venom toxins, mammalian transmembrane receptors and miscellaneous signaling molecules..The available data suggest that Prod1, and thereby its role in encoding PD identity, is restricted to salamanders. The lack of comparable limb-regenerative capability in other adult vertebrates could be correlated with the absence of the Prod1 gene
    • …
    corecore