1,057 research outputs found

    NF-κB Activity Initiates Human ESC-Derived Neural Progenitor Cell Differentiation by Inducing a Metabolic Maturation Program.

    Get PDF
    Human neural development begins at embryonic day 19 and marks the beginning of organogenesis. Neural stem cells in the neural tube undergo profound functional, morphological, and metabolic changes during neural specification, coordinated by a combination of exogenous and endogenous cues. The temporal cell signaling activities that mediate this process, during development and in the postnatal brain, are incompletely understood. We have applied gene expression studies and transcription factor-activated reporter lentiviruses during in vitro neural specification of human pluripotent stem cells. We show that nuclear factor κB orchestrates a multi-faceted metabolic program necessary for the maturation of neural progenitor cells during neurogenesis

    Prevention of breast cancer by recapitulation of pregnancy hormone levels

    Get PDF
    At the present time, the only approved method of breast cancer prevention is use of the selective estrogen receptor modulator (SERM) tamoxifen. Many breast cancers are driven to grow by estrogen, and tamoxifen exploits this by blocking estrogen action at the estrogen receptor. A counter-intuitive and controversial approach to breast cancer prevention is administration of estrogen and progestin at an early age to achieve pregnancy levels. This approach is supported by the fact that breast cancer incidence is halved by early (≤ 20 years of age) full-term pregnancy. Moreover, it has been demonstrated in rodent models that mimicking the hormonal milieu can effectively prevent carcinogen-induced mammary cancer. In this issue of Breast Cancer Research Rajkumar and colleagues use the rodent model to further define the timing and type of hormonal therapy that is effective in preventing mammary carcinogenesis. Clearly, application of this approach in humans may be difficult, but the potential benefit is intriguing

    Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria)

    Get PDF
    Modern hard corals (Class Hexacorallia; Order Scleractinia) are widely studied because of their fundamental role in reef building and their superb fossil record extending back to the Triassic. Nevertheless, interpretations of their evolutionary relationships have been in flux for over a decade. Recent analyses undermine the legitimacy of traditional suborders, families and genera, and suggest that a non-skeletal sister clade (Order Corallimorpharia) might be imbedded within the stony corals. However, these studies either sampled a relatively limited array of taxa or assembled trees from heterogeneous data sets. Here we provide a more comprehensive analysis of Scleractinia (127 species, 75 genera, 17 families) and various outgroups, based on two mitochondrial genes (cytochrome oxidase I, cytochrome b), with analyses of nuclear genes (ßtubulin, ribosomal DNA) of a subset of taxa to test unexpected relationships. Eleven of 16 families were found to be polyphyletic. Strikingly, over one third of all families as conventionally defined contain representatives from the highly divergent "robust" and "complex" clades. However, the recent suggestion that corallimorpharians are true corals that have lost their skeletons was not upheld. Relationships were supported not only by mitochondrial and nuclear genes, but also often by morphological characters which had been ignored or never noted previously. The concordance of molecular characters and more carefully examined morphological characters suggests a future of greater taxonomic stability, as well as the potential to trace the evolutionary history of this ecologically important group using fossils

    Evolution of reproductive development in the volvocine algae

    Get PDF
    The evolution of multicellularity, the separation of germline cells from sterile somatic cells, and the generation of a male–female dichotomy are certainly among the greatest innovations of eukaryotes. Remarkably, phylogenetic analysis suggests that the shift from simple to complex, differentiated multicellularity was not a unique progression in the evolution of life, but in fact a quite frequent event. The spheroidal green alga Volvox and its close relatives, the volvocine algae, span the full range of organizational complexity, from unicellular and colonial genera to multicellular genera with a full germ–soma division of labor and male–female dichotomy; thus, these algae are ideal model organisms for addressing fundamental issues related to the transition to multicellularity and for discovering universal rules that characterize this transition. Of all living species, Volvox carteri represents the simplest version of an immortal germline producing specialized somatic cells. This cellular specialization involved the emergence of mortality and the production of the first dead ancestors in the evolution of this lineage. Volvocine algae therefore exemplify the evolution of cellular cooperation from cellular autonomy. They also serve as a prime example of the evolution of complex traits by a few successive, small steps. Thus, we learn from volvocine algae that the evolutionary transition to complex, multicellular life is probably much easier to achieve than is commonly believed

    Spread of a highly mucoid Streptococcus pyogenes emm3/ST15 clone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyaluronic acid capsule plays a key role in <it>Streptococcus pyogenes </it>virulence. Circulation of mucoid or highly encapsulated strains has been related to rheumatic fever epidemics and invasive disease in several countries. In 2009, an outbreak of mucoid <it>S. pyogenes </it>isolates was detected in northern Spain. The aim of the study was to describe clinical and molecular characteristics of mucoid strains causing this outbreak and to compare them with a sample of non-mucoid <it>S. pyogenes </it>isolates obtained during the same period of time.</p> <p>Methods</p> <p>All <it>S. pyogenes </it>isolates with a mucoid colony morphology (n = 132), 10% of non-mucoid (n = 144) and all invasive <it>S. pyogenes </it>isolates (n = 7) obtained in 2009 were included. Characterization was performed by T-agglutination, <it>emm </it>typing, pulsed field gel electrophoresis and multilocus sequence typing.</p> <p>Results</p> <p>One clone characterized as <it>emm</it>3.1/ST15 comprised 98.5% (n = 130) of all mucoid isolates. Subjects of all ages were affected. Main clinical manifestations were pharyngitis and scarlet fever, but this clone also caused invasive disease: two cases of streptococcal toxic shock syndrome, one arthritis, and one celullitis with a fatal outcome. Mucoid isolates were more prone to cause invasive disease than non-mucoid isolates (p = 0.001).</p> <p>Conclusions</p> <p>Although no acute rheumatic fever cases were detected, the most worrisome characteristics of this clone were the success for causing invasive disease and the merge of two virulent features: the serotype, <it>emm</it>3, and capsule hyper-production, expressed as a mucoid morphology.</p

    Maximum in the Middle: Nonlinear Response of Microbial Plankton to Ultraviolet Radiation and Phosphorus

    Get PDF
    The responses of heterotrophic microbial food webs (HMFW) to the joint action of abiotic stressors related to global change have been studied in an oligotrophic high-mountain lake. A 2×5 factorial design field experiment performed with large mesocosms for >2 months was used to quantify the dynamics of the entire HMFW (bacteria, heterotrophic nanoflagellates, ciliates, and viruses) after an experimental P-enrichment gradient which approximated or surpassed current atmospheric P pulses in the presence vs. absence of ultraviolet radiation. HMFW underwent a mid-term (<20 days) acute development following a noticeable unimodal response to P enrichment, which peaked at intermediate P-enrichment levels and, unexpectedly, was more accentuated under ultraviolet radiation. However, after depletion of dissolved inorganic P, the HMFW collapsed and was outcompeted by a low-diversity autotrophic compartment, which constrained the development of HMFW and caused a significant loss of functional biodiversity. The dynamics and relationships among variables, and the response patterns found, suggest the importance of biotic interactions (predation/parasitism and competition) in restricting HMFW development, in contrast to the role of abiotic factors as main drivers of autotrophic compartment. The response of HMFW may contribute to ecosystem resilience by favoring the maintenance of the peculiar paths of energy and nutrient-mobilization in these pristine ecosystems, which are vulnerable to threats by the joint action of abiotic stressors related to global change.This research was supported by Junta de Andalucía (Excelencia P07-CVI-02598 to PC, and P09-RNM-5376 to JMMS), the Spanish Ministries of Medio Ambiente, Rural y Marino (PN2009/067 to PC) and Ciencia e Innovación (GLC2008-01127/BOS and CGL2011-23681 to PC), the ERC Advanced Grant project number 250254 “MINOS” (to GB), and two Spanish government grants (to JADM and FJB)

    Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype

    Get PDF
    Batten diseases (BDs) are a group of lysosomal storage disorders characterized by seizure, visual loss, and cognitive and motor deterioration. We discovered increased levels of globotriaosylceramide (Gb3) in cellular and murine models of CLN3 and CLN7 diseases and used fluorescent-conjugated bacterial toxins to label Gb3 to develop a cell-based high content imaging (HCI) screening assay for the repurposing of FDA-approved compounds able to reduce this accumulation within BD cells. We found that tamoxifen reduced the lysosomal accumulation of Gb3 in CLN3 and CLN7 cell models, including neuronal progenitor cells (NPCs) from CLN7 patient-derived induced pluripotent stem cells (iPSC). Here, tamoxifen exerts its action through a mechanism that involves activation of the transcription factor EB (TFEB), a master gene of lysosomal function and autophagy. In vivo administration of tamoxifen to the CLN7Δex2 mouse model reduced the accumulation of Gb3 and SCMAS, decreased neuroinflammation, and improved motor coordination. These data strongly suggest that tamoxifen may be a suitable drug to treat some types of Batten disease
    corecore