6 research outputs found

    A hybrid life cycle assessment of public transportation buses with alternative fuel options

    No full text
    Purpose: Alternative fuel options are gaining popularity in the vehicle market. Adopting alternative fuel options for public transportation compared to passenger vehicles contributes exponentially to reductions in transportation-related environmental impacts. Therefore, this study aims to present total air pollutant emissions and water withdrawal impacts through the lifetime of a transit bus with different fuel options. Methods: In consideration of market share and future development trends, diesel, biodiesel, compressed natural gas (CNG), liquefied natural gas (LNG), hybrid (diesel-electric), and battery electric (BE) transit buses are analyzed with an input-output (IO)-based hybrid life cycle assessment (LCA) model. In order to accommodate the sensitivity of total impacts to fuel economy, three commonly used driving cycles are considered: Manhattan, Central Business District (CBD), and Orange County Transit Authority (OCTA). Fuel economy for each of these driving cycles varies over the year with other impacts, so a normal distribution of fuel economy is developed with a Monte Carlo simulation model for each driving cycle and corresponding fuel type. Results and discussion: Impacts from a solar panel (photovoltaic, PV) charging scenario and different grid mix scenarios are evaluated and compared to the nation’s average grid mix impacts from energy generation to accommodate the lifetime electricity needs for the BE transit bus. From these results, it was found that the BE transit bus causes significantly low CO2 emissions than diesel and other alternative fuel options, while some of the driving cycles of the hybrid-powered transit bus cause comparable emissions to BE transit bus. On the other hand, lifetime water withdrawal impacts of the diesel and hybrid options are more feasible compared to other options, since electricity generation and natural gas manufacturing are both heavily dependent on water withdrawal. In addition, the North American Electricity Reliability Corporation’s (NERC) regional electricity grid mix impacts on CO2 emissions and water withdrawal are presented for the BE transit bus. Conclusions: As an addition of current literature, LCA of alternative fuel options was performed in this paper for transit buses with the consideration of a wide variety of environmental indicators. Although the results indicate that BE and hybrid-powered buses have less environmental emissions, the US’s dependency on fossil fuel for electricity generation continues to yield significant lifetime impacts on BE transit bus operation. With respect to water withdrawal impacts, we believe that the adoption of BE transit buses will be faster and more environmentally feasible for some NREC regions than for others

    Application of life cycle assessment approach to deliver low carbon houses at regional level in Western Australia

    No full text
    Purpose: Australian building sector contributes 23% of the total greenhouse gas (GHG) emissions. This is particularly important for Western Australia (WA) as the houses here are made of energy- and carbon-intensive clay bricks. This research has utilized life cycle assessment (LCA) approach and cleaner production strategies (CPS) to design low-carbon houses in 18 locations in regional WA. Methods: An integrative LCA analysis of clay brick house has been conducted by incorporating energy efficiency rating tool (i.e., AccuRate) to capture the regional variation in thermal performance of houses in 18 locations in WA under five climatic zones. The data bank provided information on energy and materials for mining to material production, transportation of construction materials to the site of construction, and construction stages, while an energy rating tool has been utilized to generate location-specific information on energy consumption during use stage for developing a life cycle inventory for estimating life cycle GHG emissions and embodied energy consumption of a typical 4 × 2 × 2 detached house (i.e., 4 bed rooms, 2 bathrooms, and 2 cars/double garage). This approach has enabled us to determine the location-specific hotspot of a house in order to select suitable CPS for achieving reduced level of GHG emissions and embodied energy consumption. Results and discussion: Except for two hottest locations, the average life cycle GHG emissions and embodied energy consumption of houses at 16 locations in regional WA have been estimated to be 469 t of CO2 equivalent (or CO2 e-) and 6.9 TJ, respectively. Home appliances and water heating have been found to be the top two hotspots. The CPS options, including rooftop solar photovoltaic panels (PV), solar water heaters (SWH) integrated with gas based water heaters, cast in situ concrete sandwich wall, fly ash as a partial replacement of cement in concrete, and polyethylene terephthalate (PET) foam made of post-consumed polyethylene terephthalate bottles, have been considered to reduce GHG emissions and embodied energy consumption of a typical house in18 locations in regional WA. Excluding above two hottest locations, these CPS provide an opportunity to reduce GHG emissions and embodied energy consumption per house by an average value of 320 t CO2 e- and 3.7 TJ, respectively. Conclusions: Considering the alarming growth rate of the housing industry in WA, the incorporation of optimum house orientation, rooftop solar PV, roof top SWH, cast in situ sandwich wall, partial replacement of cement in concrete with fly ash, and PET foam insulation core could reduce the overall GHG emissions and embodied energy consumption associated with the construction and use of clay brick wall house which in turn will assist in achieving Australia’s GHG emission reduction target by 2050. The findings provide useful data for architects, designers, developers, and policy makers to choose from these CPS options based on existing resource availability and cost constraints
    corecore