102 research outputs found
Patterns of nucleotide diversity at the regions encompassing the Drosophila insulin-like peptide (dilp) genes: demography vs positive selection in Drosophila melanogaster.
In Drosophila, the insulin-signaling pathway controls some life history traits, such as fertility and lifespan, and it is considered to be the main metabolic pathway involved in establishing adult body size. Several observations concerning variation in body size in the Drosophila genus are suggestive of its adaptive character. Genes encoding proteins in this pathway are, therefore, good candidates to have experienced adaptive changes and to reveal the footprint of positive selection. The Drosophila insulin-like peptides (DILPs) are the ligands that trigger the insulin-signaling cascade. In Drosophila melanogaster, there are several peptides that are structurally similar to the single mammalian insulin peptide. The footprint of recent adaptive changes on nucleotide variation can be unveiled through the analysis of polymorphism and divergence. With this aim, we have surveyed nucleotide sequence variation at the dilp1-7 genes in a natural population of D. melanogaster. The comparison of polymorphism in D. melanogaster and divergence from D. simulans at different functional classes of the dilp genes provided no evidence of adaptive protein evolution after the split of the D. melanogaster and D. simulans lineages. However, our survey of polymorphism at the dilp gene regions of D. melanogaster has provided some evidence for the action of positive selection at or near these genes. The regions encompassing the dilp1-4 genes and the dilp6 gene stand out as likely affected by recent adaptive events
Malaria protection due to sickle haemoglobin depends on parasite genotype
Host genetic factors can confer resistance against malaria1, raising the question of whether this has led to evolutionary adaptation of parasite populations. Here we searched for association between candidate host and parasite genetic variants in 3,346 Gambian and Kenyan children with severe malaria caused by Plasmodium falciparum. We identified a strong association between sickle haemoglobin (HbS) in the host and three regions of the parasite genome, which is not explained by population structure or other covariates, and which is replicated in additional samples. The HbS-associated alleles include nonsynonymous variants in the gene for the acyl-CoA synthetase family member2-4 PfACS8 on chromosome 2, in a second region of chromosome 2, and in a region containing structural variation on chromosome 11. The alleles are in strong linkage disequilibrium and have frequencies that covary with the frequency of HbS across populations, in particular being much more common in Africa than other parts of the world. The estimated protective effect of HbS against severe malaria, as determined by comparison of cases with population controls, varies greatly according to the parasite genotype at these three loci. These findings open up a new avenue of enquiry into the biological and epidemiological significance of the HbS-associated polymorphisms in the parasite genome and the evolutionary forces that have led to their high frequency and strong linkage disequilibrium in African P. falciparum populations
A pig model of acute Staphylococcus aureus induced pyemia
<p>Abstract</p> <p>Background</p> <p>Sepsis caused by <it>Staphylococcus aureus </it>constitutes an important cause of morbidity and mortality in humans, and the incidence of this disease-entity is increasing. In this paper we describe the initial microbial dynamics and lesions in pigs experimentally infected with <it>S. aureus</it>, with the aim of mimicking human sepsis and pyemia.</p> <p>Methods</p> <p>The study was conducted in anaesthetized and intravenously inoculated pigs, and was based on bacteriological examination of blood and testing of blood for IL-6 and C-reactive protein. Following killing of the animals and necropsy bacteriological and histological examinations of different organs were performed 4, 5 or 6 h after inoculation.</p> <p>Results</p> <p>Clearance of bacteria from the blood was completed within the first 2 h in some of the pigs and the highest bacterial load was recorded in the lungs as compared to the spleen, liver and bones. This probably was a consequence of both the intravenous route of inoculation and the presence of pulmonary intravascular macrophages. Inoculation of bacteria induced formation of acute microabscesses in the lungs, spleen and liver, but not in the kidneys or bones. No generalized inflammatory response was recorded, i.e. IL-6 was not detected in the blood and C-reactive protein did not increase, probably because of the short time course of the study.</p> <p>Conclusion</p> <p>This study demonstrates the successful induction of acute pyemia (microabscesses), and forms a basis for future experiments that should include inoculation with strains of <it>S. aureus </it>isolated from man and an extension of the timeframe aiming at inducing sepsis, severe sepsis and septic shock.</p
Steroid receptor coactivator-1 modulates the function of Pomc neurons and energy homeostasis
Hypothalamic neurons expressing the anorectic peptide Pro-opiomelanocortin (Pomc) regulate food intake and body weight. Here, we show that Steroid Receptor Coactivator-1 (SRC-1) interacts with a target of leptin receptor activation, phosphorylated STAT3, to potentiate Pomc transcription. Deletion of SRC-1 in Pomc neurons in mice attenuates their depolarization by leptin, decreases Pomc expression and increases food intake leading to high-fat diet-induced obesity. In humans, fifteen rare heterozygous variants in SRC-1 found in severely obese individuals impair leptin-mediated Pomc reporter activity in cells, whilst four variants found in non-obese controls do not. In a knock-in mouse model of a loss of function human variant (SRC-1L1376P), leptin-induced depolarization of Pomc neurons and Pomc expression are significantly reduced, and food intake and body weight are increased. In summary, we demonstrate that SRC-1 modulates the function of hypothalamic Pomc neurons, and suggest that targeting SRC-1 may represent a useful therapeutic strategy for weight loss.Peer reviewe
A qualitative analysis of relatives', health professionals' and service users' views on the involvement in care of relatives in Bipolar Disorder
Background: Relatives of people with bipolar disorder report that services do not meet their own needs, despite clinical recommendations for the development of care plans for relatives, provision of information regarding their statutory entitlements, and formal involvement in decision making meetings. Further, there is now conclusive evidence highlighting the benefits of relatives' involvement in improving outcomes for service users, relatives, and the health system as a whole. This qualitative study explored the views of relatives of people with bipolar disorder, service users and healthcare professionals regarding the barriers and the facilitators to relatives' involvement in care. Methods: Thirty five people were interviewed (12 relatives, 11 service users and 12 healthcare professionals). Audio recordings were transcribed verbatim and common themes in participants' narratives emerged using framework analysis. Results: Participants' accounts confirmed the existence of opportunities for relatives to be involved. These, however, were limited and not always accessible. There were three factors identified that influenced accessibility namely: pre-existing worldviews, the quality of relationships and of communication between those involved, and specific structural impediments. Discussion: These themes are understood as intertwined and dependent on one another. People's thoughts, beliefs, attitudes, cultural identifications and worldviews often underlie the ways by which they communicate and the quality of their relationship. These, however, need to be conceptualised within operational frameworks and policy agendas in health settings that often limit bipolar relatives' accessibility to opportunities for being more formally involved. Conclusions: Involving relatives leads to clear benefits for relatives, service users, healthcare professionals, and the health system as a whole. Successful involvement of relatives, however, depends on a complex network of processes and interactions among all those involved and requires strategic planning from policy makers, operational plans and allocation of resources
Mouse genomic variation and its effect on phenotypes and gene regulation
We report genome sequences of 17 inbred strains of laboratory mice and identify almost ten times more variants than previously known. We use these genomes to explore the phylogenetic history of the laboratory mouse and to examine the functional consequences of allele-specific variation on transcript abundance, revealing that at least 12% of transcripts show a significant tissue-specific expression bias. By identifying candidate functional variants at 718 quantitative trait loci we show that the molecular nature of functional variants and their position relative to genes vary according to the effect size of the locus. These sequences provide a starting point for a new era in the functional analysis of a key model organism
The UK10K project identifies rare variants in health and disease
M. KivimÀki työryhmÀjÀsen.The contribution of rare and low-frequency variants to human traits is largely unexplored. Here we describe insights from sequencing whole genomes (low read depth, 7x) or exomes (high read depth, 80x) of nearly 10,000 individuals from population-based and disease collections. In extensively phenotyped cohorts we characterize over 24 million novel sequence variants, generate a highly accurate imputation reference panel and identify novel alleles associated with levels of triglycerides (APOB), adiponectin (ADIPOQ) and low-density lipoprotein cholesterol (LDLR and RGAG1) from single-marker and rare variant aggregation tests. We describe population structure and functional annotation of rare and low-frequency variants, use the data to estimate the benefits of sequencing for association studies, and summarize lessons from disease-specific collections. Finally, we make available an extensive resource, including individual-level genetic and phenotypic data and web-based tools to facilitate the exploration of association results.Peer reviewe
Low-frequency variation in TP53 has large effects on head circumference and intracranial volume.
Cranial growth and development is a complex process which affects the closely related traits of head circumference (HC) and intracranial volume (ICV). The underlying genetic influences shaping these traits during the transition from childhood to adulthood are little understood, but might include both age-specific genetic factors and low-frequency genetic variation. Here, we model the developmental genetic architecture of HC, showing this is genetically stable and correlated with genetic determinants of ICV. Investigating up to 46,000 children and adults of European descent, we identify association with final HC and/or final ICVâ+âHC at 9 novel common and low-frequency loci, illustrating that genetic variation from a wide allele frequency spectrum contributes to cranial growth. The largest effects are reported for low-frequency variants within TP53, with 0.5âcm wider heads in increaser-allele carriers versus non-carriers during mid-childhood, suggesting a previously unrecognized role of TP53 transcripts in human cranial development
- âŠ