266 research outputs found
The History of Galaxy Formation in Groups: An Observational Perspective
We present a pedagogical review on the formation and evolution of galaxies in
groups, utilizing observational information from the Local Group to galaxies at
z~6. The majority of galaxies in the nearby universe are found in groups, and
galaxies at all redshifts up to z~6 tend to cluster on the scale of nearby
groups (~1 Mpc). This suggests that the group environment may play a role in
the formation of most galaxies. The Local Group, and other nearby groups,
display a diversity in star formation and morphological properties that puts
limits on how, and when, galaxies in groups formed. Effects that depend on an
intragroup medium, such as ram-pressure and strangulation, are likely not major
mechanisms driving group galaxy evolution. Simple dynamical friction arguments
however show that galaxy mergers should be common, and a dominant process for
driving evolution. While mergers between L_* galaxies are observed to be rare
at z < 1, they are much more common at earlier times. This is due to the
increased density of the universe, and to the fact that high mass galaxies are
highly clustered on the scale of groups. We furthermore discus why the local
number density environment of galaxies strongly correlates with galaxy
properties, and why the group environment may be the preferred method for
establishing the relationship between properties of galaxies and their local
density.Comment: Invited review, 16 pages, to be published in ESO Astrophysics
Symposia: "Groups of Galaxies in the Nearby Universe", eds. I. Saviane, V.
Ivanov, J. Borissov
Pseudomonas expression of an oxygen sensing prolyl hydroxylase homologue regulates neutrophil host responses in vitro and in vivo
Background: Pseudomonas species are adapted to evade innate immune responses and can persist at sites of relative tissue hypoxia, including the mucus-plugged airways of patients with cystic fibrosis and bronchiectasis. The ability of these bacteria to directly sense and respond to changes in local oxygen availability is in part consequent upon expression of the 2-oxoglutarate oxygenase, Pseudomonas prolyl hydroxylase (PPHD), which acts on elongation factor Tu (EF-Tu), and is homologous with the human hypoxia inducible factor (HIF) prolyl hydroxylases. We report that PPHD expression regulates the neutrophil response to acute pseudomonal infection. Methods: In vitro co-culture experiments were performed with human neutrophils and PPHD-deficient and wild-type bacteria and supernatants, with viable neutrophil counts determined by flow cytometry. In vivo consequences of infection with PPHD deficient P. aeruginosa were determined in an acute pneumonia mouse model following intra-tracheal challenge. Results: Supernatants of PPHD-deficient bacterial cultures contained higher concentrations of the phenazine exotoxin pyocyanin and induced greater acceleration of neutrophil apoptosis than wild-type PAO1 supernatants in vitro. In vivo infection with PPHD mutants compared to wild-type PAO1 controls resulted in increased levels of neutrophil apoptosis and impaired control of infection, with higher numbers of P. aeruginosa recovered from the lungs of mice infected with the PPHD-deficient strain. This resulted in an overall increase in mortality in mice infected with the PPHD-deficient strain. Conclusions: Our data show that Pseudomonas expression of its prolyl hydroxylase influences the outcome of host-pathogen interactions in vitro and in vivo, demonstrating the importance of considering how both host and pathogen adaptations to hypoxia together define outcomes of infection. Given that inhibitors for the HIF prolyl hydroxylases are in late stage trials for the treatment of anaemia and that the active sites of PPHD and human HIF prolyl hydroxylases are closely related, the results are of current clinical interest
A recent rebuilding of most spirals ?
Re-examination of the properties of distant galaxies leads to the evidence
that most present-day spirals have built up half of their stellar masses during
the last 8 Gyr, mostly during several intense phases of star formation during
which they took the appearance of luminous infrared galaxies (LIRGs). Distant
galaxy morphologies encompass all of the expected stages of galaxy merging,
central core formation and disk growth, while their cores are much bluer than
those of present-day bulges. We have tested a spiral rebuilding scenario, for
which 75+/-25% of spirals have experienced their last major merger event less
than 8 Gyr ago. It accounts for the simultaneous decreases, during that period,
of the cosmic star formation density, of the merger rate, of the number
densities of LIRGs and of compact galaxies, while the densities of ellipticals
and large spirals are essentially unaffected.Comment: (1) GEPI, Obs. Meudon, France ;(2)Max-Planck Institut fuer
Astronomie, Germany (3) National Astronomical Observatories, CAS, China. Five
pages, 1 figure. To be published in "Starbursts: From 30 Doradus to Lyman
Break Galaxies", held in Cambridge, ed. R. de Grijs & R. M. Gonzalez Delgado
(Dordrecht: Kluwer
The Morphology of Passively Evolving Galaxies at Z-2 from HST/WFC3 in the Hubble Ultra Deep Field
We discuss near-IR images of six passive galaxies (SSFR< 10(exp -2)/Gyr) at redshift 1.3 < z < 2.4 with stellar mass M approx 10(exp 11) solar mass, selected from the Great Observatories Origins Deep Survey (GOODS), obtained with WFC3/IR and the Hubble Space Telescope (HST). These WFC3 images provide the deepest and highest angular resolution view of the optical rest-frame morphology of such systems to date. We find that the light profile of these; galaxies is generally regular and well described by a Sersic model with index typical of today's spheroids. We confirm the existence of compact and massive early-type galaxies at z approx. 2: four out of six galaxies have T(sub e) approx. 1 kpc or less. The WFC3 images achieve limiting surface brightness mu approx. 26.5 mag/sq arcsec in the F160W bandpass; yet there is no evidence of a faint halo in the five compact galaxies of our sample, nor is a halo observed in their stacked image. We also find very weak "morphological k-correction" in the galaxies between the rest-frame UV (from the ACS z band), and the rest-frame optical (WFC3 H band): the visual classification, Sersic indices and physical sizes of these galaxies are independent or only mildly dependent on the wavelength, within the errors
Scale issues in soil moisture modelling: problems and prospects
Soil moisture storage is an important component of the hydrological cycle and plays a key role in land-surface-atmosphere interaction. The soil-moisture storage equation in this study considers precipitation as an input and soil moisture as a residual term for runoff and evapotranspiration. A number of models have been developed to estimate soil moisture storage and the components of the soil-moisture storage equation. A detailed discussion of the impli cation of the scale of application of these models reports that it is not possible to extrapolate processes and their estimates from the small to the large scale. It is also noted that physically based models for small-scale applications are sufficiently detailed to reproduce land-surface- atmosphere interactions. On the other hand, models for large-scale applications oversimplify the processes. Recently developed physically based models for large-scale applications can only be applied to limited uses because of data restrictions and the problems associated with land surface characterization. It is reported that remote sensing can play an important role in over coming the problems related to the unavailability of data and the land surface characterization of large-scale applications of these physically based models when estimating soil moisture storage.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
A quantitative systems pharmacology consortium approach to managing immunogenicity of therapeutic proteins
Immunogenicity is a major challenge in drug development and patient care. Currently, most efforts are dedicated to the elimination of the unwanted immune responses through Tâcell epitope prediction and protein engineering. However, because it is unlikely that this approach will lead to complete eradication of immunogenicity, we propose that quantitative systems pharmacology models should be developed to predict and manage immunogenicity. The potential impact of such a mechanistic modelâbased approach is precedented by applications of physiologicallyâbased pharmacokinetics
Planck early results. XVII. Origin of the submillimetre excess dust emission in the Magellanic Clouds
The integrated spectral energy distributions (SED) of the Large Magellanic Cloud (LMC) and SmallMagellanic Cloud (SMC) appear significantly
flatter than expected from dust models based on their far-infrared and radio emission. The still unexplained origin of this millimetre excess is
investigated here using the Planck data. The integrated SED of the two galaxies before subtraction of the foreground (Milky Way) and background
(CMB fluctuations) emission are in good agreement with previous determinations, confirming the presence of the millimetre excess. In the context
of this preliminary analysis we do not propose a full multi-component fitting of the data, but instead subtract contributions unrelated to the galaxies
and to dust emission.
The background CMB contribution is subtracted using an internal linear combination (ILC) method performed locally around the galaxies. The
foreground emission from the Milky Way is subtracted as a Galactic Hi template, and the dust emissivity is derived in a region surrounding the
two galaxies and dominated by Milky Way emission. After subtraction, the remaining emission of both galaxies correlates closely with the atomic
and molecular gas emission of the LMC and SMC. The millimetre excess in the LMC can be explained by CMB fluctuations, but a significant
excess is still present in the SMC SED. The Planck and IRASâIRIS data at 100 ÎŒm are combined to produce thermal dust temperature and optical
depth maps of the two galaxies. The LMC temperature map shows the presence of a warm inner arm already found with the Spitzer data, but which also shows the existence of a
previously unidentified cold outer arm. Several cold regions are found along this arm, some of which are associated with known molecular clouds.
The dust optical depth maps are used to constrain the thermal dust emissivity power-law index (ÎČ). The average spectral index is found to be
consistent with ÎČ =1.5 and ÎČ =1.2 below 500 ÎŒm for the LMC and SMC respectively, significantly flatter than the values observed in the Milky
Way. Also, there is evidence in the SMC of a further flattening of the SED in the sub-mm, unlike for the LMC where the SED remains consistent
with ÎČ =1.5. The spatial distribution of the millimetre dust excess in the SMC follows the gas and thermal dust distribution. Different models are
explored in order to fit the dust emission in the SMC. It is concluded that the millimetre excess is unlikely to be caused by very cold dust emission
and that it could be due to a combination of spinning dust emission and thermal dust emission by more amorphous dust grains than those present
in our Galaxy
Planck early results. XXII. The submillimetre properties of a sample of Galactic cold clumps
We perform a detailed investigation of sources from the Cold Cores Catalogue of Planck Objects (C3PO). Our goal is to probe the reliability
of the detections, validate the separation between warm and cold dust emission components, provide the first glimpse at the nature, internal
morphology and physical characterictics of the Planck-detected sources. We focus on a sub-sample of ten sources from the C3PO list, selected to
sample different environments, from high latitude cirrus to nearby (150 pc) and remote (2 kpc) molecular complexes. We present Planck surface
brightness maps and derive the dust temperature, emissivity spectral index, and column densities of the fields. With the help of higher resolution
Herschel and AKARI continuum observations and molecular line data, we investigate the morphology of the sources and the properties of the
substructures at scales below the Planck beam size. The cold clumps detected by Planck are found to be located on large-scale filamentary (or
cometary) structures that extend up to 20 pc in the remote sources. The thickness of these filaments ranges between 0.3 and 3 pc, for column
densities NH2 ⌠0.1 to 1.6 Ă 1022 cmâ2, and with linear mass density covering a broad range, between 15 and 400 M pcâ1. The dust temperatures
are low (between 10 and 15K) and the Planck cold clumps correspond to local minima of the line-of-sight averaged dust temperature in these
fields. These low temperatures are confirmed when AKARI and Herschel data are added to the spectral energy distributions. Herschel data reveal
a wealth of substructure within the Planck cold clumps. In all cases (except two sources harbouring young stellar objects), the substructures are
found to be colder, with temperatures as low as 7 K. Molecular line observations provide gas column densities which are consistent with those
inferred from the dust. The linewidths are all supra-thermal, providing large virial linear mass densities in the range 10 to 300 M pcâ1, comparable
within factors of a few, to the gas linear mass densities. The analysis of this small set of cold clumps already probes a broad variety of structures
in the C3PO sample, probably associated with different evolutionary stages, from cold and starless clumps, to young protostellar objects still
embedded in their cold surrounding cloud. Because of the all-sky coverage and its sensitivity, Planck is able to detect and locate the coldest spots
in massive elongated structures that may be the long-searched for progenitors of stellar clusters
Planck early results. XXV. Thermal dust in nearby molecular clouds
Planck allows unbiased mapping of Galactic sub-millimetre and millimetre emission from the most diffuse regions to the densest parts of molecular
clouds. We present an early analysis of the Taurus molecular complex, on line-of-sight-averaged data and without component separation. The
emission spectrum measured by Planck and IRAS can be fitted pixel by pixel using a single modified blackbody. Some systematic residuals are
detected at 353 GHz and 143 GHz, with amplitudes around â7% and +13%, respectively, indicating that the measured spectra are likely more
complex than a simple modified blackbody. Significant positive residuals are also detected in the molecular regions and in the 217 GHz and
100 GHz bands, mainly caused by the contribution of the J = 2 â 1 and J = 1 â 0 12CO and 13CO emission lines. We derive maps of the
dust temperature T, the dust spectral emissivity index ÎČ, and the dust optical depth at 250 ÎŒm Ï250. The temperature map illustrates the cooling
of the dust particles in thermal equilibrium with the incident radiation field, from 16â17 K in the diffuse regions to 13â14 K in the dense parts.
The distribution of spectral indices is centred at 1.78, with a standard deviation of 0.08 and a systematic error of 0.07. We detect a significant
T â ÎČ anti-correlation. The dust optical depth map reveals the spatial distribution of the column density of the molecular complex from the densest
molecular regions to the faint diffuse regions.We use near-infrared extinction and Hi data at 21-cm to perform a quantitative analysis of the spatial
variations of the measured dust optical depth at 250 ÎŒm per hydrogen atom Ï250/NH. We report an increase of Ï250/NH by a factor of about 2
between the atomic phase and the molecular phase, which has a strong impact on the equilibrium temperature of the dust particles
- âŠ