29,605 research outputs found

    Nuclear Activity in Circumnuclear Ring Galaxies

    Get PDF
    We have analyzed the frequency and properties of the nuclear activity in a sample of galaxies with circumnuclear rings and spirals (CNRs). This sample was compared with a control sample of galaxies with very similar global properties but without circumnuclear rings. We discuss the relevance of the results in regard to the AGN feeding processes and present the following results: (i) bright companion galaxies seem not to be important for the appearance of CNRs, which appear to be more related to intrinsic properties of the host galaxies or to minor merger processes; (ii) the proportion of strong bars in galaxies with an AGN and a CNR is somewhat higher than the expected ratio of strongly barred AGN galaxies from the results of Ho and co-workers; (iii) the incidence of Seyfert activity coeval with CNRs is clearly larger than the rate expected from the morphological distribution of the host galaxies; (iv) the rate of Sy 2 to Sy 1 type galaxies with CNRs is about three times larger than the expected ratio for galaxies without CNRs and is opposite to that predicted by the geometric paradigm of the classical unified model for AGNs, although it does support the hy-pothesis that Sy 2 activity is linked to circumnuclear star formation. The possible selection effects of the sample are discussed, and we conclude that the detected trends are strong enough to justify high quality observations of as large as possible sets of galaxies with circumnuclear rings and their matched control samples.Comment: Submitted to International Journal of Astronomy and Astrophysic

    Rare top decay t-> c l+l- as a probe of new physics

    Full text link
    The rare top decay t-> c l+l-, which involves flavor violation, is studied as a possible probe of new physics. This decay is analyzed with the simplest Standard Model extensions with additional gauge symmetry formalism. The considered extension is the Left-Right Symmetric Model, including a new neutral gauge boson Z' that allows to obtain the decay at tree level through Flavor Changing Neutral Currents (FCNC) couplings. The neutral gauge boson couplings are considered diagonal but family non-universal in order to induce these FCNC. We find the $BR(t-> c l+l-)~10^{-13} for a range 1 TeV < M_{Z'} < 3 TeV.Comment: 9 pages, 6 figure

    Detectors and Concepts for sub-100 ps timing with gaseous detectors

    Full text link
    We give a short compendium of the main ongoing detectors and concepts capable of performing accurate sub-100 ps timing at high particle fluxes and on large areas, through technologies based on gaseous media. We briefly discuss the state-of-the-art, technological limitations and prospects, and a new bizarre idea

    Effect of the spin-orbit interaction on the thermodynamic properties of crystals: The specific heat of bismuth

    Full text link
    In recent years, there has been increasing interest in the specific heat CC of insulators and semiconductors because of the availability of samples with different isotopic masses and the possibility of performing \textit{ab initio} calculations of its temperature dependence C(T)C(T) using as a starting point the electronic band structure. Most of the crystals investigated are elemental (e.g., germanium) or binary (e.g., gallium nitride) semiconductors. The initial electronic calculations were performed in the local density approximation and did not include spin-orbit interaction. Agreement between experimental and calculated results was usually found to be good, except for crystals containing heavy atoms (e.g., PbS) for which discrepancies of the order of 20% existed at the low temperature maximum found for C/T3C/T^3. It has been conjectured that this discrepancies result from the neglect of spin-orbit interaction which is large for heavy atoms (Δ0\Delta_0\sim1.3eV for the pp valence electrons of atomic lead). Here we discuss measurements and \textit{ab initio} calculations of C(T)C(T) for crystalline bismuth (Δ0\Delta_0\sim1.7 eV), strictly speaking a semimetal but in the temperature region accessible to us (T>T > 2K) acting as a semiconductor. We extend experimental data available in the literature and notice that the \textit{ab initio} calculations without spin-orbit interaction exhibit a maximum at \sim8K, about 20% lower than the measured one. Inclusion of spin-orbit interaction decreases the discrepancy markedly: The maximum of C(T)C(T) is now only 7% larger than the measured one. Exact agreement is obtained if the spin-orbit hamiltonian is reduced by a factor of \sim0.8.Comment: 4 pages, 3 figure

    Historical reconstruction climate variability and change in Mediterranean regions

    Get PDF
    In the frame of “US-Italy cooperation on Science and Technology of climatic change”, sponsored by INGV, we organized a meeting focusing on decadal climate variability in the Mediterranean regions in the context of long-term climate change. Our aim is to assess past climate variability using historical climate reconstructions and sources in the Mediterranean region both of western US and southern Europe. This report summarizes some key aspects of climate variability in the Mediterranean region in the past 200 years and identifies uncertainties and unresolved scientific questions still open for further research

    Cup products on polyhedral approximations of 3D digital images

    Get PDF
    Let I be a 3D digital image, and let Q(I) be the associated cubical complex. In this paper we show how to simplify the combinatorial structure of Q(I) and obtain a homeomorphic cellular complex P(I) with fewer cells. We introduce formulas for a diagonal approximation on a general polygon and use it to compute cup products on the cohomology H *(P(I)). The cup product encodes important geometrical information not captured by the cohomology groups. Consequently, the ring structure of H *(P(I)) is a finer topological invariant. The algorithm proposed here can be applied to compute cup products on any polyhedral approximation of an object embedded in 3-space

    Statistical analysis of entropy correction from topological defects in Loop Black Holes

    Full text link
    In this paper we discuss the entropy of quantum black holes in the LQG formalism when the number of punctures on the horizon is treated as a quantum hair, that is we compute the black hole entropy in the grand canonical (area) ensemble. The entropy is a function of both the average area and the average number of punctures and bears little resemblance to the Bekenstein-Hawking entropy. In the thermodynamic limit, both the "temperature" and the chemical potential can be shown to be functions only of the average area per puncture. At a fixed temperature, the average number of punctures becomes proportional to the average area and we recover the Bekenstein-Hawking area-entropy law to leading order provided that the Barbero-Immirzi parameter, γ\gamma, is appropriately fixed. This also relates the chemical potential to γ\gamma. We obtain a sub-leading correction, which differs in signature from that obtained in the microcanonical and canonical ensembles in its sign but agrees with earlier results in the grand canonical ensemble.Comment: 12 pages, no figures. Version to appear in Phys. Rev.
    corecore