1,052 research outputs found
Numerical study of the coupling between reaction and mass transfer for liquid-liquid slug flow in square microchannels
While the benefits of miniaturisation on processes have been widely demonstrated, its impact on microfluidics and local mechanisms such as mass transfer is still little understood. The aim of this work is to simulate coupling between reaction and mass transfer in microchannels for liquid-liquid slug flow. First, the extrapolation to confined flow of the classical model used to calculate interfacial mass fluxes in reactive infinite media was studied. This model consists in estimating transferred fluxes between two phases as a function of the enhancement factor E. Its expression depends on the model used to represent interfacial mass transfer. In infinite media, Lewis and Whitman’s stagnant film theory is generally preferred for its simplicity and its reliability. In the case of confined slug flow, the limitation of such a model to predict interfacial fluxes is highlighted. Secondly, the case of liquid-liquid competitive consecutive reactions in microchannels is considered. This work emphasizes the unfavourable impact of the length between droplets on selectivity. This is a direct consequence of mass transport mechanisms in microchannels
The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance
The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide,
raising serious concerns.
A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations
of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between
11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the
country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint
Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing.
Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7
December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive
wastewater samples rising from 1.0% (1/104 samples) in the week 5–11 December, to 17.5% (25/143 samples)
in the week 12–18, to 65.9% (89/135 samples) in the week 19–25, in line with the increase in cases of infection with
the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in
which the variant was detected increased fromone in the first week, to 11 in the second, and to 17 in the last one. The
presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples,
and by Sanger sequencing in 66% (64/97) of PCR amplicons
Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing
<p>Abstract</p> <p>Background</p> <p>The garden pea, <it>Pisum sativum</it>, is among the best-investigated legume plants and of significant agro-commercial relevance. <it>Pisum sativum </it>has a large and complex genome and accordingly few comprehensive genomic resources exist.</p> <p>Results</p> <p>We analyzed the pea transcriptome at the highest possible amount of accuracy by current technology. We used next generation sequencing with the Roche/454 platform and evaluated and compared a variety of approaches, including diverse tissue libraries, normalization, alternative sequencing technologies, saturation estimation and diverse assembly strategies. We generated libraries from flowers, leaves, cotyledons, epi- and hypocotyl, and etiolated and light treated etiolated seedlings, comprising a total of 450 megabases. Libraries were assembled into 324,428 unigenes in a first pass assembly.</p> <p>A second pass assembly reduced the amount to 81,449 unigenes but caused a significant number of chimeras. Analyses of the assemblies identified the assembly step as a major possibility for improvement. By recording frequencies of Arabidopsis orthologs hit by randomly drawn reads and fitting parameters of the saturation curve we concluded that sequencing was exhaustive. For leaf libraries we found normalization allows partial recovery of expression strength aside the desired effect of increased coverage. Based on theoretical and biological considerations we concluded that the sequence reads in the database tagged the vast majority of transcripts in the aerial tissues. A pathway representation analysis showed the merits of sampling multiple aerial tissues to increase the number of tagged genes. All results have been made available as a fully annotated database in fasta format.</p> <p>Conclusions</p> <p>We conclude that the approach taken resulted in a high quality - dataset which serves well as a first comprehensive reference set for the model legume pea. We suggest future deep sequencing transcriptome projects of species lacking a genomics backbone will need to concentrate mainly on resolving the issues of redundancy and paralogy during transcriptome assembly.</p
Development of Useful Recombinant Promoter and Its Expression Analysis in Different Plant Cells Using Confocal Laser Scanning Microscopy
BACKGROUND: Designing functionally efficient recombinant promoters having reduced sequence homology and enhanced promoter activity will be an important step toward successful stacking or pyramiding of genes in a plant cell for developing transgenic plants expressing desired traits(s). Also basic knowledge regarding plant cell specific expression of a transgene under control of a promoter is crucial to assess the promoter's efficacy. METHODOLOGY/PRINCIPAL FINDINGS: We have constructed a set of 10 recombinant promoters incorporating different up-stream activation sequences (UAS) of Mirabilis mosaic virus sub-genomic transcript (MS8, -306 to +27) and TATA containing core domains of Figwort mosaic virus sub-genomic transcript promoter (FS3, -271 to +31). Efficacies of recombinant promoters coupled to GUS and GFP reporter genes were tested in tobacco protoplasts. Among these, a 369-bp long hybrid sub-genomic transcript promoter (MSgt-FSgt) showed the highest activity in both transient and transgenic systems. In a transient system, MSgt-FSgt was 10.31, 2.86 and 2.18 times more active compared to the CaMV35S, MS8 and FS3 promoters, respectively. In transgenic tobacco (Nicotiana tabaccum, var. Samsun NN) and Arabidopsis plants, the MSgt-FSgt hybrid promoter showed 14.22 and 7.16 times stronger activity compared to CaMV35S promoter respectively. The correlation between GUS activity and uidA-mRNA levels in transgenic tobacco plants were identified by qRT-PCR. Both CaMV35S and MSgt-FSgt promoters caused gene silencing but the degree of silencing are less in the case of the MSgt-FSgt promoter compared to CaMV35S. Quantification of GUS activity in individual plant cells driven by the MSgt-FSgt and the CaMV35S promoter were estimated using confocal laser scanning microscopy and compared. CONCLUSION AND SIGNIFICANCE: We propose strong recombinant promoter MSgt-FSgt, developed in this study, could be very useful for high-level constitutive expression of transgenes in a wide variety of plant cells
Updated precision measurement of the average lifetime of B hadrons
The measurement of the average lifetime of B hadrons using inclusively reconstructed secondary vertices has been updated using both an improved processing of previous data and additional statistics from new data. This has reduced the statistical and systematic uncertainties and gives \tau_{\mathrm{B}} = 1.582 \pm 0.011\ \mathrm{(stat.)} \pm 0.027\ \mathrm{(syst.)}\ \mathrm{ps.} Combining this result with the previous result based on charged particle impact parameter distributions yields \tau_{\mathrm{B}} = 1.575 \pm 0.010\ \mathrm{(stat.)} \pm 0.026\ \mathrm{(syst.)}\ \mathrm{ps.
Measurement of inclusive production in hadronic decays
An analysis is presented of inclusive \pi^0 production in Z^0 decays measured with the DELPHI detector. At low energies, \pi^0 decays are reconstructed by \linebreak using pairs of converted photons and combinations of converted photons and photons reconstructed in the barrel electromagnetic calorimeter (HPC). At high energies (up to x_p = 2 \cdot p_{\pi}/\sqrt{s} = 0.75) the excellent granularity of the HPC is exploited to search for two-photon substructures in single showers. The inclusive differential cross section is measured as a function of energy for {q\overline q} and {b \bar b} events. The number of \pi^0's per hadronic Z^0 event is N(\pi^0)/ Z_{had}^0 = 9.2 \pm 0.2 \mbox{(stat)} \pm 1.0 \mbox{(syst)} and for {b \bar b}~events the number of \pi^0's is {\mathrm N(\pi^0)/ b \overline b} = 10.1 \pm 0.4 \mbox{(stat)} \pm 1.1 \mbox{(syst)} . The ratio of the number of \pi^0's in b \overline b events to hadronic Z^0 events is less affected by the systematic errors and is found to be 1.09 \pm 0.05 \pm 0.01. The measured \pi^0 cross sections are compared with the predictions of different parton shower models. For hadronic events, the peak position in the \mathrm \xi_p = \ln(1/x_p) distribution is \xi_p^{\star} = 3.90^{+0.24}_{-0.14}. The average number of \pi^0's from the decay of primary \mathrm B hadrons is found to be {\mathrm N} (B \rightarrow \pi^0 \, X)/\mbox{B hadron} = 2.78 \pm 0.15 \mbox{(stat)} \pm 0.60 \mbox{(syst)}
- …