23 research outputs found

    Whole-brain metallomic analysis of the common marmoset (: Callithrix jacchus)

    Get PDF
    © 2017 The Royal Society of Chemistry. Despite the importance of transition metals for normal brain function, relatively little is known about the distribution of these elemental species across the different tissue compartments of the primate brain. In this study, we employed laser ablation-inductively coupled plasma-mass spectrometry on PFA-fixed brain sections obtained from two adult common marmosets. Concurrent cytoarchitectonic, myeloarchitectonic, and chemoarchitectonic measurements allowed for identification of the major neocortical, archaecortical, and subcortical divisions of the brain, and precise localisation of iron, manganese, and zinc concentrations within each division. Major findings across tissue compartments included: (1) differentiation of white matter tracts from grey matter based on manganese and zinc distribution; (2) high iron concentrations in the basal ganglia, cortex, and substantia nigra; (3) co-localization of high concentrations of iron and manganese in the primary sensory areas of the cerebral cortex; and (4) high manganese in the hippocampus. The marmoset has become a model species of choice for connectomic, aging, and transgenic studies in primates, and the application of metallomics to these disciplines has the potential to yield high translational and basic science value

    Naïve and Experienced Honeybee Foragers Learn Normally Configured Flowers More Easily Than Non-configured or Highly Contrasted Flowers

    Full text link
    Angiosperms have evolved to attract and/or deter specific pollinators. Flowers provide signals and cues such as scent, colour, size, pattern, and shape, which allow certain pollinators to more easily find and visit the same type of flower. Over evolutionary time, bees and angiosperms have co-evolved resulting in flowers being more attractive to bee vision and preferences, and allowing bees to recognise specific flower traits to make decisions on where to forage. Here we tested whether bees are instinctively tuned to process flower shape by training both flower-experienced and flower-na&iuml;ve honeybee foragers to discriminate between pictures of two different flower species when images were either normally configured flowers or flowers which were scrambled in terms of spatial configuration. We also tested whether increasing picture contrast, to make flower features more salient, would improve or impair performance. We used four flower conditions: (i) normally configured greyscale flower pictures, (ii) scrambled flower configurations, (iii) high contrast normally configured flowers, and (iv) asymmetrically scrambled flowers. While all flower pictures contained very similar spatial information, both experienced and na&iuml;ve bees were better able to learn to discriminate between normally configured flowers than between any of the modified versions. Our results suggest that a specialisation in flower recognition in bees is due to a combination of hard-wired neural circuitry and experience-dependent factors.</jats:p
    corecore