269 research outputs found
Identification of the Transcriptional Regulator NcrB in the Nickel Resistance Determinant of Leptospirillum ferriphilum UBK03
The nickel resistance determinant ncrABCY was identified in Leptospirillum ferriphilum UBK03. Within this operon, ncrA and ncrC encode two membrane proteins that form an efflux system, and ncrB encodes NcrB, which belongs to an uncharacterized family (DUF156) of proteins. How this determinant is regulated remains unknown. Our data indicate that expression of the nickel resistance determinant is induced by nickel. The promoter of ncrA, designated pncrA, was cloned into the promoter probe vector pPR9TT, and co-transformed with either a wild-type or mutant nickel resistance determinant. The results revealed that ncrB encoded a transcriptional regulator that could regulate the expression of ncrA, ncrB, and ncrC. A GC-rich inverted repeat sequence was identified in the promoter pncrA. Electrophoretic mobility shift assays (EMSAs) and footprinting assays showed that purified NcrB could specifically bind to the inverted repeat sequence of pncrA in vitro; this was confirmed by bacterial one-hybrid analysis. Moreover, this binding was inhibited in the presence of nickel ions. Thus, we classified NcrB as a transcriptional regulator that recognizes the inverted repeat sequence binding motif to regulate the expression of the key nickel resistance gene, ncrA
Transcriptional and Functional Studies of a Cd(II)/Pb(II)-Responsive Transcriptional Regulator(CmtR) from Acidithiobacillus ferrooxidans ATCC 23270
The acidophilic Acidithiobacillusferrooxidans can resist exceptionally high cadmium (Cd) concentrations. This property is important for its use in biomining processes, where Cd and other metal levels range usually between 15 and 100 mM. To learn about the mechanisms that allow A. ferrooxidans cells to survive in this environment, a bioinformatic search of its genome showed the presence of that a Cd(II)/Pb(II)-responsive transcriptional regulator (CmtR) was possibly related to Cd homeostasis. The expression of the CmtR was studied by real-time reverse transcriptase PCR using A. ferrooxidans cells adapted for growth in the presence of high concentrations of Cd. The putative A. ferrooxidans Cd resistance determinant was found to be upregulated when this bacterium was exposed to Cd in the range of 15–30 mM. The CmtR from A. ferrooxidans was cloned and expressed in Escherichiacoli, the soluble protein was purified by one-step affinity chromatography to apparent homogeneity. UV–Vis spectroscopic measurements showed that the reconstruction CmtR was able to bind Cd(II) forming Cd(II)–CmtR complex in vitro. The sequence alignment and molecular modeling showed that the crucial residues for CmtR binding were likely to be Cys77, Cys112, and Cys121. The results reported here strongly suggest that the high resistance of the extremophilic A. ferrooxidans to Cd including the Cd(II)/Pb(II)-responsive transcriptional regulator
Interactive seminars or small group tutorials in preclinical medical education: results of a randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>Learning in small group tutorials is appreciated by students and effective in the acquisition of clinical problem-solving skills but poses financial and resource challenges. Interactive seminars, which accommodate large groups, might be an alternative. This study examines the educational effectiveness of small group tutorials and interactive seminars and students' preferences for and satisfaction with these formats.</p> <p>Methods</p> <p>Students in year three of the Leiden undergraduate medical curriculum, who agreed to participate in a randomized controlled trial (RCT, n = 107), were randomly allocated to small group tutorials (n = 53) or interactive seminars (n = 54). Students who did not agree were free to choose either format (n = 105). Educational effectiveness was measured by comparing the participants' results on the end-of-block test. Data on students' reasons and satisfaction were collected by means of questionnaires. Data was analyzed using student unpaired t test or chi-square test where appropriate.</p> <p>Results</p> <p>There were no significant differences between the two educational formats in students' test grades. Retention of knowledge through active participation was the most frequently cited reason for preferring small group tutorials, while a dislike of compulsory course components was mentioned more frequently by students preferring interactive seminars. Small group tutorials led to greater satisfaction.</p> <p>Conclusions</p> <p>We found that small group tutorials leads to greater satisfaction but not to better learning results. Interactive learning in large groups might be might be an effective alternative to small group tutorials in some cases and be offered as an option.</p
Effects of automated alerts on unnecessarily repeated serology tests in a cardiovascular surgery department: a time series analysis
<p>Abstract</p> <p>Background</p> <p>Laboratory testing is frequently unnecessary, particularly repetitive testing. Among the interventions proposed to reduce unnecessary testing, Computerized Decision Support Systems (CDSS) have been shown to be effective, but their impact depends on their technical characteristics. The objective of the study was to evaluate the impact of a Serology-CDSS providing point of care reminders of previous existing serology results, embedded in a Computerized Physician Order Entry at a university teaching hospital in Paris, France.</p> <p>Methods</p> <p>A CDSS was implemented in the Cardiovascular Surgery department of the hospital in order to decrease inappropriate repetitions of viral serology tests (HBV).</p> <p>A time series analysis was performed to assess the impact of the alert on physicians' practices. The study took place between January 2004 and December 2007. The primary outcome was the proportion of unnecessarily repeated HBs antigen tests over the periods of the study. A test was considered unnecessary when it was ordered within 90 days after a previous test for the same patient. A secondary outcome was the proportion of potentially unnecessary HBs antigen test orders cancelled after an alert display.</p> <p>Results</p> <p>In the pre-intervention period, 3,480 viral serology tests were ordered, of which 538 (15.5%) were unnecessarily repeated. During the intervention period, of the 2,095 HBs antigen tests performed, 330 unnecessary repetitions (15.8%) were observed. Before the intervention, the mean proportion of unnecessarily repeated HBs antigen tests increased by 0.4% per month (absolute increase, 95% CI 0.2% to 0.6%, <it>p </it>< 0.001). After the intervention, a significant trend change occurred, with a monthly difference estimated at -0.4% (95% CI -0.7% to -0.1%, <it>p </it>= 0.02) resulting in a stable proportion of unnecessarily repeated HBs antigen tests. A total of 380 unnecessary tests were ordered among 500 alerts displayed (compliance rate 24%).</p> <p>Conclusions</p> <p>The proportion of unnecessarily repeated tests immediately dropped after CDSS implementation and remained stable, contrasting with the significant continuous increase observed before. The compliance rate confirmed the effect of the alerts. It is necessary to continue experimentation with dedicated systems in order to improve understanding of the diversity of CDSS and their impact on clinical practice.</p
Crystal Structure of Escherichia coli CusC, the Outer Membrane Component of a Heavy Metal Efflux Pump
Background: While copper has essential functions as an enzymatic co-factor, excess copper ions are toxic for cells, necessitating mechanisms for regulating its levels. The cusCBFA operon of E. coli encodes a four-component efflux pump dedicated to the extrusion of Cu(I) and Ag(I) ions. Methodology/Principal Findings: We have solved the X-ray crystal structure of CusC, the outer membrane component of the Cus heavy metal efflux pump, to 2.3 A ˚ resolution. The structure has the largest extracellular opening of any outer membrane factor (OMF) protein and suggests, for the first time, the presence of a tri-acylated N-terminal lipid anchor. Conclusions/Significance: The CusC protein does not have any obvious features that would make it specific for metal ions, suggesting that the narrow substrate specificity of the pump is provided by other components of the pump, most likely by the inner membrane component CusA
A whole-cell biosensor for the detection of gold
Geochemical exploration for gold (Au) is becoming increasingly important to the mining industry. Current processes for Au analyses require sampling materials to be taken from often remote localities. Samples are then transported to a laboratory equipped with suitable analytical facilities, such as Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) or Instrumental Neutron Activation Analysis (INAA). Determining the concentration of Au in samples may take several weeks, leading to long delays in exploration campaigns. Hence, a method for the on-site analysis of Au, such as a biosensor, will greatly benefit the exploration industry. The golTSB genes from Salmonella enterica serovar typhimurium are selectively induced by Au(I/III)-complexes. In the present study, the golTSB operon with a reporter gene, lacZ, was introduced into Escherichia coli. The induction of golTSB::lacZ with Au(I/III)-complexes was tested using a colorimetric β-galactosidase and an electrochemical assay. Measurements of the β-galactosidase activity for concentrations of both Au(I)- and Au(III)-complexes ranging from 0.1 to 5 µM (equivalent to 20 to 1000 ng g⁻¹ or parts-per-billion (ppb)) were accurately quantified. When testing the ability of the biosensor to detect Au(I/III)-complexes(aq) in the presence of other metal ions (Ag(I), Cu(II), Fe(III), Ni(II), Co(II), Zn, As(III), Pb(II), Sb(III) or Bi(III)), cross-reactivity was observed, i.e. the amount of Au measured was either under- or over-estimated. To assess if the biosensor would work with natural samples, soils with different physiochemical properties were spiked with Au-complexes. Subsequently, a selective extraction using 1 M thiosulfate was applied to extract the Au. The results showed that Au could be measured in these extracts with the same accuracy as ICP-MS (P<0.05). This demonstrates that by combining selective extraction with the biosensor system the concentration of Au can be accurately measured, down to a quantification limit of 20 ppb (0.1 µM) and a detection limit of 2 ppb (0.01 µM).Carla M. Zammit, Davide Quaranta, Shane Gibson, Anita J. Zaitouna, Christine Ta, Joël Brugger, Rebecca Y. Lai, Gregor Grass, Frank Reit
Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli
Gram-negative bacteria, such as Escherichia coli, expel toxic chemicals via tripartite efflux pumps spanning both the inner and outer membranes. The three parts are: 1) a membrane fusion protein connecting 2) a substrate-binding inner membrane transporter to 3) an outer membrane-anchored channel in the periplasmic space. A crystallographic model of this tripartite efflux complex has been unavailable simply because co-crystallization of different components of the system has proven to be extremely difficult. We previously described the crystal structures of both the inner membrane transporter CusA1 and membrane fusion protein CusB2 of the CusCBA efflux system3,4 from E. coli. We here report the co-crystal structure of the CusBA efflux complex, revealing the trimeric CusA efflux pump interacts with six CusB protomers at the upper half of the periplasmic domain. These six CusB molecules form a channel extending contiguously from the top of the pump. The affinity of the CusA and CusB interaction was found to be in the micromolar range. Finally, we predicted a three-dimensional structure of the trimeric CusC outer membrane channel, and develop a model of the tripartite efflux assemblage. This CusC3-CusB6-CusA3 model presents a 750 kDa efflux complex spanning the entire bacterial cell envelope to export Cu(I)/Ag(I) ions
Comparative genomics of Pseudomonas fluorescens subclade III strains from human lungs
Abstract
Background
While the taxonomy and genomics of environmental strains from the P. fluorescens species-complex has been reported, little is known about P. fluorescens strains from clinical samples. In this report, we provide the first genomic analysis of P. fluorescens strains in which human vs. environmental isolates are compared.
Results
Seven P. fluorescens strains were isolated from respiratory samples from cystic fibrosis (CF) patients. The clinical strains could grow at a higher temperature (>34 °C) than has been reported for environmental strains. Draft genomes were generated for all of the clinical strains, and multi-locus sequence analysis placed them within subclade III of the P. fluorescens species-complex. All strains encoded type- II, −III, −IV, and -VI secretion systems, as well as the widespread colonization island (WCI). This is the first description of a WCI in P. fluorescens strains. All strains also encoded a complete I2/PfiT locus and showed evidence of horizontal gene transfer. The clinical strains were found to differ from the environmental strains in the number of genes involved in metal resistance, which may be a possible adaptation to chronic antibiotic exposure in the CF lung.
Conclusions
This is the largest comparative genomics analysis of P. fluorescens subclade III strains to date and includes the first clinical isolates. At a global level, the clinical P. fluorescens subclade III strains were largely indistinguishable from environmental P. fluorescens subclade III strains, supporting the idea that identifying strains as ‘environmental’ vs ‘clinical’ is not a phenotypic trait. Rather, strains within P. fluorescens subclade III will colonize and persist in any niche that provides the requirements necessary for growth.http://deepblue.lib.umich.edu/bitstream/2027.42/116129/1/12864_2015_Article_2261.pd
Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport
Gram-negative bacteria, such as Escherichia coli, frequently utilize tripartite efflux complexes in the resistance-nodulation-cell division (RND) family to expel diverse toxic compounds from the cell.1,2 The efflux system CusCBA is responsible for extruding biocidal Cu(I) and Ag(I) ions.3,4 No prior structural information was available for the heavy-metal efflux (HME) subfamily of the RND efflux pumps. Here we describe the crystal structures of the inner membrane transporter CusA in the absence and presence of bound Cu(I) or Ag(I). These CusA structures provide important new structural information about the HME sub-family of RND efflux pumps. The structures suggest that the metal binding sites, formed by a three-methionine cluster, are located within the cleft region of the periplasmic domain. Intriguingly, this cleft is closed in the apo-CusA form but open in the CusA-Cu(I) and CusA-Ag(I) structures, which directly suggests a plausible pathway for ion export. Binding of Cu(I) and Ag(I) triggers significant conformational changes in both the periplasmic and transmembrane domains. The crystal structure indicates that CusA has, in addition to the three-methionine metal binding site, four methionine pairs - three located in the transmembrane region and one in the periplasmic domain. Genetic analysis and transport assays suggest that CusA is capable of actively picking up metal ions from the cytosol, utilizing these methionine pairs/clusters to bind and export metal ions. These structures suggest a stepwise shuttle mechanism for transport between these sites
- …