274 research outputs found
Therapeutic DNA vaccine induces broad T cell responses in the gut and sustained protection from viral rebound and AIDS in SIV-infected rhesus macaques.
Immunotherapies that induce durable immune control of chronic HIV infection may eliminate the need for life-long dependence on drugs. We investigated a DNA vaccine formulated with a novel genetic adjuvant that stimulates immune responses in the blood and gut for the ability to improve therapy in rhesus macaques chronically infected with SIV. Using the SIV-macaque model for AIDS, we show that epidermal co-delivery of plasmids expressing SIV Gag, RT, Nef and Env, and the mucosal adjuvant, heat-labile E. coli enterotoxin (LT), during antiretroviral therapy (ART) induced a substantial 2-4-log fold reduction in mean virus burden in both the gut and blood when compared to unvaccinated controls and provided durable protection from viral rebound and disease progression after the drug was discontinued. This effect was associated with significant increases in IFN-Ξ³ T cell responses in both the blood and gut and SIV-specific CD8+ T cells with dual TNF-Ξ± and cytolytic effector functions in the blood. Importantly, a broader specificity in the T cell response seen in the gut, but not the blood, significantly correlated with a reduction in virus production in mucosal tissues and a lower virus burden in plasma. We conclude that immunizing with vaccines that induce immune responses in mucosal gut tissue could reduce residual viral reservoirs during drug therapy and improve long-term treatment of HIV infection in humans
Coding, Recording and Incidence of Different Forms of Coronary Heart Disease in Primary Care
To evaluate the coding, recording and incidence of coronary heart disease (CHD) in primary care electronic medical records.Data were drawn from the UK General Practice Research Database. Analyses evaluated the occurrence of 271 READ medical diagnostic codes, including categories for 'Angina', 'Myocardial Infarction', 'Coronary Artery Bypass Grafting' (CABG), 'percutaneous transluminal coronary angioplasty' (PCTA) and 'Other Coronary Heart Disease'. Time-to-event analyses were implemented to evaluate occurrences of different groups of codes after the index date.Among 300,020 participants aged greater than 30 years there were 75,197 unique occurrences of coronary heart disease codes in 24,244 participants, with 12,495 codes for incident events and 62,702 for prevalent events. Among incident event codes, 3,607 (28.87%) were for angina, 3,262 (26.11%) were for MI, 514 (4.11%) for PCTA, 161 (1.29%) for CABG and 4,951 (39.62%) were for 'Other CHD'. Among prevalent codes, 20,254 (32.30%) were for angina, 3,644 (5.81%) for MI, 34,542 (55.09%) for 'Other CHD' and 4,262 (6.80%) for CABG or PCTA. Among 3,685 participants initially diagnosed exclusively with 'Other CHD' codes, 17.1% were recorded with angina within 5 years, 5.6% with myocardial infarction, 6.3% with CABG and 8.6% with PCTA. From 2000 to 2010, the overall incidence of CHD declined, as did the incidence of angina, but the incidence of MI did not change. The frequency of CABG declined, while PCTA increased.In primary care electronic records, a substantial proportion of coronary heart disease events are recorded with codes that do not distinguish between different clinical presentations of CHD. The results draw attention to the need to improve coding practice in primary care. The results also draw attention to the importance of code selection in research studies and the need for sensitivity analyses using different sets of codes
Characteristics and Treatment Outcomes of Patients with MDR and XDR Tuberculosis in a TB Referral Hospital in Beijing: A 13-Year Experience
Background: Information on treatment outcomes among hospitalized patients with multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) are scarce in China. Methodology/Principal Findings: We conducted this retrospective study to analyze the characteristics and treatment outcomes in MDR- and XDR-TB patients in the 309 Hospital in Beijing, China during 1996-2009. Socio-demographic and clinical data were retrieved from medical records and analyzed. Logistic regression analysis was performed to identify risk factors associated with poor treatment outcomes and Cox proportional hazards regression model was further used to determine risk factors associated with death in TB patients. Among the 3,551 non-repetitive hospitalized TB patients who had drug susceptibility testing (DST) results, 716 (20.2%) had MDR-TB and 51 (1.4%) had XDR-TB. A total of 3,270 patients who had medical records available were used for further analyses. Treatment success rates (cured and treatment completed) were 90.9%, 53.4% and 29.2% for patients with non-MDR-TB, patients with MDR-TB excluding XDR-TB and patients with XDR-TB, respectively. Independent risk factors associated with poor treatment outcomes in MDR-TB patients included being a migrant (adjusted OR = 1.77), smear-positivity at treatment onset (adjusted OR = 1.94) and not receiving 3 or more potentially effective drugs (adjusted OR = 3.87). Independent risk factors associated with poor treatment outcomes in XDR-TB patients were smear-positivity at treatment onset (adjusted OR = 10.42) and not receiving 3 or more potentially effective drugs (adjusted OR = 14.90). The independent risk factors associated with death in TB patients were having chronic obstructive pulmonary disease (adjusted HR = 5.25) and having hypertension (adjusted HR = 4.31). Conclusions/Significance: While overall satisfactory treatment success for non-MDR-TB patients was achieved, more intensive efforts should be made to better manage MDR- and XDR-TB cases in order to improve their treatment outcomes and to minimize further emergence of so-called totally drug-resistant TB cases. Β© 2011 Liu et al.published_or_final_versio
Human biodistribution and radiation dosimetry of novel PET probes targeting the deoxyribonucleoside salvage pathway
PurposeDeoxycytidine kinase (dCK) is a rate-limiting enzyme in deoxyribonucleoside salvage, a metabolic pathway involved in the production and maintenance of a balanced pool of deoxyribonucleoside triphosphates (dNTPs) for DNA synthesis. dCK phosphorylates and therefore activates nucleoside analogs such as cytarabine, gemcitabine, decitabine, cladribine, and clofarabine that are used routinely in cancer therapy. Imaging probes that target dCK might allow stratifying patients into likely responders and nonresponders with dCK-dependent prodrugs. Here we present the biodistribution and radiation dosimetry of three fluorinated dCK substrates, (18)F-FAC, L: -(18)F-FAC, and L: -(18)F-FMAC, developed for positron emission tomography (PET) imaging of dCK activity in vivo.MethodsPET studies were performed in nine healthy human volunteers, three for each probe. After a transmission scan, the radiopharmaceutical was injected intravenously and three sequential emission scans acquired from the base of the skull to mid-thigh. Regions of interest encompassing visible organs were drawn on the first PET scan and copied to the subsequent scans. Activity in target organs was determined and absorbed dose estimated with OLINDA/EXM. The standardized uptake value was calculated for various organs at different times.ResultsRenal excretion was common to all three probes. Bone marrow had higher uptake for L: -(18)F-FAC and L: -(18)F-FMAC than (18)F-FAC. Prominent liver uptake was seen in L: -(18)F-FMAC and L: -(18)F-FAC, whereas splenic activity was highest for (18)F-FAC. Muscle uptake was also highest for (18)F-FAC. The critical organ was the bladder wall for all three probes. The effective dose was 0.00524, 0.00755, and 0.00910Β mSv/MBq for (18)F-FAC, L: -(18)F-FAC, and L: -(18)F-FMAC, respectively.ConclusionThe biodistribution of (18)F-FAC, L: -(18)F-FAC, and L: -(18)F-FMAC in humans reveals similarities and differences. Differences may be explained by different probe affinities for nucleoside transporters, dCK, and catabolic enzymes such as cytidine deaminase (CDA). Dosimetry demonstrates that all three probes can be used safely to image the deoxyribonucleoside salvage pathway in humans
Survival of Civilian and Prisoner Drug-Sensitive, Multi- and Extensive Drug- Resistant Tuberculosis Cohorts Prospectively Followed in Russia
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Effects of gemcitabine on APE/ref-1 endonuclease activity in pancreatic cancer cells, and the therapeutic potential of antisense oligonucleotides
Apurinic/apyrimidinic endonuclease (APE) is a key enzyme involved in DNA base excision repair (BER) that is often expressed at elevated levels in human cancers. Pancreatic cancer cells treated with the nucleoside analogue gemcitabine (2β², 2β²-difluoro-2β²deoxycytidine) showed increases in APE/redox effector factor (ref-1) protein levels (approximately two-fold for Panc-1 and six-fold for MiaPaCa-2), with corresponding increases in endonuclease activity. These results suggested that the activation of APE/ref-1 might be an adaptive response that contributes to gemcitabine resistance by facilitating BER. To test this hypothesis, we examined the effects of disrupting APE/ref-1 using antisense on gemcitabine toxicity. Antisense oligonucleotides decreased protein levels three-fold in MiaPaCa-2 and five-fold in Panc-1 in comparison to controls, associated with reduced endonuclease activity. Combination treatments with antisense oligonucleotides and gemcitabine partially suppressed the increase in APE/ref-1 activity seen in cells exposed to gemcitabine alone. While clonogenic assays showed only slight decreases in colony formation in cells treated with either antisense oligonucleotides or gemcitabine alone, the combination with APE/ref-1 antisense resulted in a 2-log enhancement of gemcitabine toxicity in Panc-1 cells. Overall these findings suggest that APE/ref-1 plays a significant role in gemcitabine resistance in some pancreatic cancer cells, and support the further investigation of novel treatments that target this protein
Soluble CD59 Expressed from an Adenovirus In Vivo Is a Potent Inhibitor of Complement Deposition on Murine Liver Vascular Endothelium
Inappropriate activation of complement on the vascular endothelium of specific organs, or systemically, underlies the etiology of a number of diseases. These disorders include atypical hemolytic uremic syndrome, membranoproliferative glomerulonephritis, atherosclerosis, age-related macular degeneration, diabetic retinopathy, and transplant rejection. Inhibition of the terminal step of complement activation, i.e. formation of the membrane attack complex, using CD59 has the advantage of retaining the upstream processes of the complement cascade necessary for fighting pathogens and retaining complement's crucial role in tissue homeostasis. Previous studies have shown the necessity of membrane targeting of soluble CD59 in order for it to prove an effective inhibitor of complement deposition both in vitro and in vivo. In this study we have generated an in vivo model of human complement activation on murine liver vascular endothelium. This model should prove useful for the development of anti-complement therapies for complement-induced pathologies of vascular endothelium. Using this model, we have demonstrated the viability of a non membrane-targeted soluble CD59 to significantly inhibit complement deposition on the endothelium of murine liver vasculature when expressed in vivo from an adenovirus. This result, unanticipated based on prior studies, suggests that the use of non membrane-targeted sCD59 as an anti-complement therapy be re-visited
GATA Transcription Factor Required for Immunity to Bacterial and Fungal Pathogens
In the past decade, Caenorhabditis elegans has been used to dissect several genetic pathways involved in immunity; however, little is known about transcription factors that regulate the expression of immune effectors. C. elegans does not appear to have a functional homolog of the key immune transcription factor NF-ΞΊB. Here we show that that the intestinal GATA transcription factor ELT-2 is required for both immunity to Salmonella enterica and expression of a C-type lectin gene, clec-67, which is expressed in the intestinal cells and is a good marker of S. enterica infection. We also found that ELT-2 is required for immunity to Pseudomonas aeruginosa, Enterococcus faecalis, and Cryptococcus neoformans. Lack of immune inhibition by DAF-2, which negatively regulates the FOXO transcription factor DAF-16, rescues the hypersusceptibility to pathogens phenotype of elt-2(RNAi) animals. Our results indicate that ELT-2 is part of a multi-pathogen defense pathway that regulates innate immunity independently of the DAF-2/DAF-16 signaling pathway
- β¦