173 research outputs found
Self-organized network evolution coupled to extremal dynamics
The interplay between topology and dynamics in complex networks is a
fundamental but widely unexplored problem. Here, we study this phenomenon on a
prototype model in which the network is shaped by a dynamical variable. We
couple the dynamics of the Bak-Sneppen evolution model with the rules of the
so-called fitness network model for establishing the topology of a network;
each vertex is assigned a fitness, and the vertex with minimum fitness and its
neighbours are updated in each iteration. At the same time, the links between
the updated vertices and all other vertices are drawn anew with a
fitness-dependent connection probability. We show analytically and numerically
that the system self-organizes to a non-trivial state that differs from what is
obtained when the two processes are decoupled. A power-law decay of dynamical
and topological quantities above a threshold emerges spontaneously, as well as
a feedback between different dynamical regimes and the underlying correlation
and percolation properties of the network.Comment: Accepted version. Supplementary information at
http://www.nature.com/nphys/journal/v3/n11/suppinfo/nphys729_S1.htm
Scaling Laws in Human Language
Zipf's law on word frequency is observed in English, French, Spanish,
Italian, and so on, yet it does not hold for Chinese, Japanese or Korean
characters. A model for writing process is proposed to explain the above
difference, which takes into account the effects of finite vocabulary size.
Experiments, simulations and analytical solution agree well with each other.
The results show that the frequency distribution follows a power law with
exponent being equal to 1, at which the corresponding Zipf's exponent diverges.
Actually, the distribution obeys exponential form in the Zipf's plot. Deviating
from the Heaps' law, the number of distinct words grows with the text length in
three stages: It grows linearly in the beginning, then turns to a logarithmical
form, and eventually saturates. This work refines previous understanding about
Zipf's law and Heaps' law in language systems.Comment: 6 pages, 4 figure
Composite Fermion Metals from Dyon Black Holes and S-Duality
We propose that string theory in the background of dyon black holes in
four-dimensional anti-de Sitter spacetime is holographic dual to conformally
invariant composite Dirac fermion metal. By utilizing S-duality map, we show
that thermodynamic and transport properties of the black hole match with those
of composite fermion metal, exhibiting Fermi liquid-like. Built upon
Dirac-Schwinger-Zwanziger quantization condition, we argue that turning on
magnetic charges to electric black hole along the orbit of Gamma(2) subgroup of
SL(2,Z) is equivalent to attaching even unit of statistical flux quanta to
constituent fermions. Being at metallic point, the statistical magnetic flux is
interlocked to the background magnetic field. We find supporting evidences for
proposed holographic duality from study of internal energy of black hole and
probe bulk fermion motion in black hole background. They show good agreement
with ground-state energy of composite fermion metal in Thomas-Fermi
approximation and cyclotron motion of a constituent or composite fermion
excitation near Fermi-point.Comment: 30 pages, v2. 1 figure added, minor typos corrected; v3. revised
version to be published in JHE
Astrobiological Complexity with Probabilistic Cellular Automata
Search for extraterrestrial life and intelligence constitutes one of the
major endeavors in science, but has yet been quantitatively modeled only rarely
and in a cursory and superficial fashion. We argue that probabilistic cellular
automata (PCA) represent the best quantitative framework for modeling
astrobiological history of the Milky Way and its Galactic Habitable Zone. The
relevant astrobiological parameters are to be modeled as the elements of the
input probability matrix for the PCA kernel. With the underlying simplicity of
the cellular automata constructs, this approach enables a quick analysis of
large and ambiguous input parameters' space. We perform a simple clustering
analysis of typical astrobiological histories and discuss the relevant boundary
conditions of practical importance for planning and guiding actual empirical
astrobiological and SETI projects. In addition to showing how the present
framework is adaptable to more complex situations and updated observational
databases from current and near-future space missions, we demonstrate how
numerical results could offer a cautious rationale for continuation of
practical SETI searches.Comment: 37 pages, 11 figures, 2 tables; added journal reference belo
Robust penetrating microelectrodes for neural interfaces realized by titanium micromachining
Neural prosthetic interfaces based upon penetrating microelectrode devices have broadened our understanding of the brain and have shown promise for restoring neurological functions lost to disease, stroke, or injury. However, the eventual viability of such devices for use in the treatment of neurological dysfunction may be ultimately constrained by the intrinsic brittleness of silicon, the material most commonly used for manufacture of penetrating microelectrodes. This brittleness creates predisposition for catastrophic fracture, which may adversely affect the reliability and safety of such devices, due to potential for fragmentation within the brain. Herein, we report the development of titanium-based penetrating microelectrodes that seek to address this potential future limitation. Titanium provides advantage relative to silicon due to its superior fracture toughness, which affords potential for creation of robust devices that are resistant to catastrophic failure. Realization of these devices is enabled by recently developed techniques which provide opportunity for fabrication of high-aspect-ratio micromechanical structures in bulk titanium substrates. Details are presented regarding the design, fabrication, mechanical testing, in vitro functional characterization, and preliminary in vivo testing of devices intended for acute recording in rat auditory cortex and thalamus, both independently and simultaneously
Hemodynamic effects of short-term hyperoxia after coronary artery bypass grafting
Background: Although oxygen is generally administered in a liberal manner in the perioperative setting, the effects of oxygen administration on dynamic cardiovascular parameters, filling status and cerebral perfusion have not been fully unraveled. Our aim was to study the acute hemodynamic and microcirculatory changes before, during and after arterial hyperoxia in mechanically ventilated patients after coronary artery bypass grafting (CABG) surgery. Methods: This was a single-center physiological study in a tertiary care ICU in the Netherlands. Twenty-two patients scheduled for ICU admission after elective CABG were enrolled in the study between September 2014 and September 2015. In the ICU, patients were exposed to a fraction of inspired oxygen (FiO(2)) of 90% allowing a 15-min wash-in period. Various hemodynamic parameters were measured using direct pressure signals and continuous arterial waveform analysis at three sequential time points: before, during and after hyperoxia. Results: During a 15-min exposure to a fraction of inspired oxygen (FiO2) of 90%, the partial pressure of arterial oxygen (PaO2) and arterial oxygen saturation (SaO(2)) were significantly higher. The systemic resistance increased (P <0.0001), without altering the heart rate. Stroke volume variation and pulse pressure variation decreased slightly. The cardiac output did not significantly decrease (P = 0.08). Mean systemic filling pressure and arterial critical closing pressure increased (P <0.01), whereas the percentage of perfused microcirculatory vessels decreased (P <0.01). Other microcirculatory parameters and cerebral blood flow velocity showed only slight changes. Conclusions: We found that short-term hyperoxia affects hemodynamics in ICU patients after CABG. This was translated in several changes in central circulatory variables, but had only slight effects on cardiac output, cerebral blood flow and the microcirculatio
Emissions generated by sugarcane burning promote genotoxicity in rural workers: a case study in Barretos, Brazil
Background: To determine the possible genotoxic effect of exposure to the smoke generated by biomass burning on workers involved in manual sugar cane harvesting.
Methods: The frequency of micronuclei in exfoliated buccal cells and peripheral blood lymphocytes was determined in sugarcane workers in the Barretos region of Brazil, during the harvest season and compared to a control population, comprised of administrative employees of Barretos Cancer Hospital.
Results: The frequency of micronuclei was higher in the sugar cane workers. The mean frequency in blood lymphocytes (micronuclei/1000 cells) in the test group was 8.22 versus 1.27 in the control group. The same effect was observed when exfoliated buccal cells were considered (22.75 and 9.70 micronuclei/1000 cells for sugar cane workers and controls, respectively).
Conclusion: Exposure to emissions produced by the burning of sugar cane during harvesting induces genomic instability in workers, indicating the necessity of adopting more advanced techniques of harvesting sugar cane to preserve human health.We thank the Researcher Support Center of Barretos Cancer Hospital, especially the statistician Zanardo C. for assisting in the statistical analysis. We thank Oliveira R. for technical support, and we acknowledge financial support from FAPESP Proc. 2010/10192-6
Zipf's Law in Short-Time Timbral Codings of Speech, Music, and Environmental Sound Signals
Timbre is a key perceptual feature that allows discrimination between different sounds. Timbral sensations are highly dependent on the temporal evolution of the power spectrum of an audio signal. In order to quantitatively characterize such sensations, the shape of the power spectrum has to be encoded in a way that preserves certain physical and perceptual properties. Therefore, it is common practice to encode short-time power spectra using psychoacoustical frequency scales. In this paper, we study and characterize the statistical properties of such encodings, here called timbral code-words. In particular, we report on rank-frequency distributions of timbral code-words extracted from 740 hours of audio coming from disparate sources such as speech, music, and environmental sounds. Analogously to text corpora, we find a heavy-tailed Zipfian distribution with exponent close to one. Importantly, this distribution is found independently of different encoding decisions and regardless of the audio source. Further analysis on the intrinsic characteristics of most and least frequent code-words reveals that the most frequent code-words tend to have a more homogeneous structure. We also find that speech and music databases have specific, distinctive code-words while, in the case of the environmental sounds, this database-specific code-words are not present. Finally, we find that a Yule-Simon process with memory provides a reasonable quantitative approximation for our data, suggesting the existence of a common simple generative mechanism for all considered sound sources
- …