9 research outputs found

    Quantification of ocean heat uptake from changes in atmospheric O2 and CO2 composition

    Get PDF
    The ocean is the main source of thermal inertia in the climate system. Ocean heat uptake during recent decades has been quantified using ocean temperature measurements. However, these estimates all use the same imperfect ocean dataset and share additional uncertainty due to sparse coverage, especially before 2007. Here, we provide an independent estimate by using measurements of atmospheric oxygen (O2) and carbon dioxide (CO2) – levels of which increase as the ocean warms and releases gases – as a whole ocean thermometer. We show that the ocean gained 1.29 ± 0.79 × 1022 Joules of heat per year between 1991 and 2016, equivalent to a planetary energy imbalance of 0.80 ± 0.49 W watts per square metre of Earth’s surface. We also find that the ocean-warming effect that led to the outgassing of O2 and CO2 can be isolated from the direct effects of anthropogenic emissions and CO2 sinks. Our result – which relies on high-precision O2 atmospheric measurements dating back to 1991 – leverages an integrative Earth system approach and provides much needed independent confirmation of heat uptake estimated from ocean data

    Model derived uncertainties in deep ocean temperature trends between 1990-2010 (article)

    No full text
    This is the final version. Available from Wiley via the DOI in this record.The research data supporting this publication are available as a supplement to this article and are openly available from the University of Exeter’s institutional repository at: https://doi.org/10.24378/exe.1104We construct a novel framework to investigate the uncertainties and biases associated with estimates of deep ocean temperature change from hydrographic sections, and demonstrate this framework in an eddy-permitting ocean model. Biases in estimates from observations arise due to sparse spatial coverage (few sections in a basin), low frequency of occupations (typically 5-10 years apart), mismatches between the time period of interest and span of occupations, and from seasonal biases relating to the practicalities of sampling during certain times of year. Between the years 1990 and 2010, the modeled global abyssal ocean biases are small, although regionally some biases (expressed as a heat flux into the 4000 - 6000 m layer) can be up to 0.05 W/m². In this model, biases in the heat flux into the deep 2000 - 4000 m layer, due to either temporal or spatial sampling uncertainties, are typically much larger and can be over 0.1 W/m² across an ocean. Overall, 82% of the warming trend deeper than 2000 m is captured by hydrographic section-style sampling in the model. At 2000 m, only half the model global warming trend is obtained from observational-style sampling, with large biases in the Atlantic, Southern and Indian Oceans. Biases due to different sources of uncertainty can have opposing signs and differ in relative importance both regionally and with depth, revealing the importance of reducing temporal and spatial uncertainties in future deep ocean observing design.Marine Physics and Ocean Climate group at the National Oceanography CentreMet Office Hadley CentreUniversity of Southampton Vice Chancellor’s Awar

    Distinct sources of interannual subtropical and subpolar Atlantic overturning variability

    No full text
    The Atlantic meridional overturning circulation (AMOC) is pivotal for regional and global climate due to its key role in the uptake and redistribution of heat and carbon. Establishing the causes of historical variability in AMOC strength on different timescales can tell us how the circulation may respond to natural and anthropogenic changes at the ocean surface. However, understanding observed AMOC variability is challenging because the circulation is influenced by multiple factors that co-vary and whose overlapping impacts persist for years. Here we reconstruct and unambiguously attribute intermonthly and interannual AMOC variability at two observational arrays to the recent history of surface wind stress, temperature and salinity. We use a state-of-the-art technique that computes space- and time-varying sensitivity patterns of the AMOC strength with respect to multiple surface properties from a numerical ocean circulation model constrained by observations. While, on interannual timescales, AMOC variability at 26° N is overwhelmingly dominated by a linear response to local wind stress, overturning variability at subpolar latitudes is generated by the combined effects of wind stress and surface buoyancy anomalies. Our analysis provides a quantitative attribution of subpolar AMOC variability to temperature, salinity and wind anomalies at the ocean surface

    An Imperative to Monitor Earth\u27s Energy Imbalance

    Get PDF
    The current Earth\u27s energy imbalance (EEI) is mostly caused by human activity, and is driving global warming. The absolute value of EEI represents the most fundamental metric defining the status of global climate change, and will be more useful than using global surface temperature. EEI can best be estimated from changes in ocean heat content, complemented by radiation measurements from space. Sustained observations from the Argo array of autonomous profiling floats and further development of the ocean observing system to sample the deep ocean, marginal seas and sea ice regions are crucial to refining future estimates of EEI. Combining multiple measurements in an optimal way holds considerable promise for estimating EEI and thus assessing the status of global climate change, improving climate syntheses and models, and testing the effectiveness of mitigation actions. Progress can be achieved with a concerted international effort

    Reconciling controversies about the ‘global warming hiatus’

    No full text
    corecore