2,463 research outputs found
High Speed Friction Stir Welding of 5182-H111 Alloy: Temperature and Microstructural Insights into Deformation Mechanisms
This paper reports the results of an investigation of thermal cycles and microstructural development in 5182-H111 aluminium alloy during low speed (0.2 m/min) and high speed (1.5 m/min) friction stir welding (FSW), using quenched pin-break specimens. The results show that welds made at both speeds have excellent mechanical properties, although these derive from different thermomechanical mechanisms. For the low speed weld thermal conductivity plays the most significant role in the development of microstructure, while in the case of high speed welding it is the high strain rate plastic deformation that is the dominant mechanism. The yield strength in the stir zone of both the 0.2 m/min and 1.5 m/min welds could be explained through the Hall–Petch relationship, leading to an observable increase in the case of the 1.5 m/min weld. By contrast, an increase in yield strength beneath the shoulder of the 1.5 m/min weld was driven by strain hardening
Metarhodopsin control by arrestin, light-filtering screening pigments, and visual pigment turnover in invertebrate microvillar photoreceptors
The visual pigments of most invertebrate photoreceptors have two thermostable photo-interconvertible states, the ground state rhodopsin and photo-activated metarhodopsin, which triggers the phototransduction cascade until it binds arrestin. The ratio of the two states in photoequilibrium is determined by their absorbance spectra and the effective spectral distribution of illumination. Calculations indicate that metarhodopsin levels in fly photoreceptors are maintained below ~35% in normal diurnal environments, due to the combination of a blue-green rhodopsin, an orange-absorbing metarhodopsin and red transparent screening pigments. Slow metarhodopsin degradation and rhodopsin regeneration processes further subserve visual pigment maintenance. In most insect eyes, where the majority of photoreceptors have green-absorbing rhodopsins and blue-absorbing metarhodopsins, natural illuminants are predicted to create metarhodopsin levels greater than 60% at high intensities. However, fast metarhodopsin decay and rhodopsin regeneration also play an important role in controlling metarhodopsin in green receptors, resulting in a high rhodopsin content at low light intensities and a reduced overall visual pigment content in bright light. A simple model for the visual pigment–arrestin cycle is used to illustrate the dependence of the visual pigment population states on light intensity, arrestin levels and pigment turnover
Brick Walls and AdS/CFT
We discuss the relationship between the bulk-boundary correspondence in
Rehren's algebraic holography (and in other 'fixed-background' approaches to
holography) and in mainstream 'Maldacena AdS/CFT'. Especially, we contrast the
understanding of black-hole entropy from the viewpoint of QFT in curved
spacetime -- in the framework of 't Hooft's 'brick wall' model -- with the
understanding based on Maldacena AdS/CFT. We show that the brick-wall
modification of a Klein Gordon field in the Hartle-Hawking-Israel state on
1+2-Schwarzschild AdS (BTZ) has a well-defined boundary limit with the same
temperature and entropy as the brick-wall-modified bulk theory. One of our main
purposes is to point out a close connection, for general AdS/CFT situations,
between the puzzle raised by Arnsdorf and Smolin regarding the relationship
between Rehren's algebraic holography and mainstream AdS/CFT and the puzzle
embodied in the 'correspondence principle' proposed by Mukohyama and Israel in
their work on the brick-wall approach to black hole entropy. Working on the
assumption that similar results will hold for bulk QFT other than the Klein
Gordon field and for Schwarzschild AdS in other dimensions, and recalling the
first author's proposed resolution to the Mukohyama-Israel puzzle based on his
'matter-gravity entanglement hypothesis', we argue that, in Maldacena AdS/CFT,
the algebra of the boundary CFT is isomorphic only to a proper subalgebra of
the bulk algebra, albeit (at non-zero temperature) the (GNS) Hilbert spaces of
bulk and boundary theories are still the 'same' -- the total bulk state being
pure, while the boundary state is mixed (thermal). We also argue from the
finiteness of its boundary (and hence, on our assumptions, also bulk) entropy
at finite temperature, that the Rehren dual of the Maldacena boundary CFT
cannot itself be a QFT and must, instead, presumably be something like a string
theory.Comment: 54 pages, 3 figures. Arguments strengthened in the light of B.S. Kay
`Instability of Enclosed Horizons' arXiv:1310.739
Corrosion fatigue of Ti-6Al-4V coupons manufactured by directed energy deposition
Titanium is a versatile biocompatible metal that is desirable in additively manufactured medical implant devices. However, additively manufactured parts have particular microstructures, porosity, residual stress, and surface conditions which can have a strong impact on fatigue performance. Implants have an added complexity from the saline operating environment and the associated impact on the safe design life. Equally, direct energy deposition induces a complex thermal history which, if not carefully controlled, can significantly alter the mechanical/material properties of the component. This study investigates the decrease in fatigue life, in an in vitro body fluid simulation using Ringer's solution, observed in Ti-6Al-4V specimens extracted from coupons manufactured by directed energy deposition. An interrupted deposition strategy was employed to control build regularity, which appeared to influence certain mechanical properties, including corrosion fatigue life. An ≈50% decrease in fatigue life was observed in Ringer's solution at 6 Hz loading frequency, clearly important in designing implants
ORENZA: a web resource for studying ORphan ENZyme activities
BACKGROUND: Despite the current availability of several hundreds of thousands of amino acid sequences, more than 36% of the enzyme activities (EC numbers) defined by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB) are not associated with any amino acid sequence in major public databases. This wide gap separating knowledge of biochemical function and sequence information is found for nearly all classes of enzymes. Thus, there is an urgent need to explore these sequence-less EC numbers, in order to progressively close this gap. DESCRIPTION: We designed ORENZA, a PostgreSQL database of ORphan ENZyme Activities, to collate information about the EC numbers defined by the NC-IUBMB with specific emphasis on orphan enzyme activities. Complete lists of all EC numbers and of orphan EC numbers are available and will be periodically updated. ORENZA allows one to browse the complete list of EC numbers or the subset associated with orphan enzymes or to query a specific EC number, an enzyme name or a species name for those interested in particular organisms. It is possible to search ORENZA for the different biochemical properties of the defined enzymes, the metabolic pathways in which they participate, the taxonomic data of the organisms whose genomes encode them, and many other features. The association of an enzyme activity with an amino acid sequence is clearly underlined, making it easy to identify at once the orphan enzyme activities. Interactive publishing of suggestions by the community would provide expert evidence for re-annotation of orphan EC numbers in public databases. CONCLUSION: ORENZA is a Web resource designed to progressively bridge the unwanted gap between function (enzyme activities) and sequence (dataset present in public databases). ORENZA should increase interactions between communities of biochemists and of genomicists. This is expected to reduce the number of orphan enzyme activities by allocating gene sequences to the relevant enzymes
A Dynamic Model of Unemployment with Migration and Delayed Policy Intervention
The purpose of this paper is to build and analyse a model of unemployment, where jobs search is open to both natives and migrant workers. Markets and government intervention respond jointly to unemployment when creating new jobs. Full employment of resources is the focal point of policy action, stimulating vacancy creation. We acknowledge that policy is implemented with delays, and capture labour market outcomes by building a non-linear dynamic system. We observe jobs separation and matching, and extend our model to an open economy with migration and delayed policy intervention meant to reduce unemployment. We analyse the stability behaviour of the resulting equilibrium for our dynamic system, including models with Dirac and weak kernels. We simulate our model with alternative scenarios, where policy action towards jobs creation considers both migration and unemployment, or just unemployment
Photoreceptor Spectral Sensitivity in the Bumblebee, Bombus impatiens (Hymenoptera: Apidae)
The bumblebee Bombus impatiens is increasingly used as a model in comparative studies of colour vision, or in behavioural studies relying on perceptual discrimination of colour. However, full spectral sensitivity data on the photoreceptor inputs underlying colour vision are not available for B. impatiens. Since most known bee species are trichromatic, with photoreceptor spectral sensitivity peaks in the UV, blue and green regions of the spectrum, data from a related species, where spectral sensitivity measurements have been made, are often applied to B impatiens. Nevertheless, species differences in spectral tuning of equivalent photoreceptor classes may result in peaks that differ by several nm, which may have small but significant effects on colour discrimination ability. We therefore used intracellular recording to measure photoreceptor spectral sensitivity in B. impatiens. Spectral peaks were estimated at 347, 424 and 539 nm for UV, blue and green receptors, respectively, suggesting that this species is a UV-blue-green trichromat. Photoreceptor spectral sensitivity peaks are similar to previous measurements from Bombus terrestris, although there is a significant difference in the peak sensitivity of the blue receptor, which is shifted in the short wave direction by 12–13 nm in B. impatiens compared to B. terrestris
A new tool for the chemical genetic investigation of the Plasmodium falciparum Pfnek-2 NIMA-related kinase
Background: Examining essential biochemical pathways in Plasmodium falciparum presents serious challenges, as standard molecular techniques such as siRNA cannot be employed in this organism, and generating gene knock-outs of essential proteins requires specialized conditional approaches. In the study of protein kinases, pharmacological inhibition presents a feasible alternative option. However, as in mammalian systems, inhibitors often lack the desired selectivity. Described here is a chemical genetic approach to selectively inhibit Pfnek-2 in P. falciparum, a member of the NIMA-related kinase family that is essential for completion of the sexual development of the parasite. Results: Introduction of a valine to cysteine mutation at position 24 in the glycine rich loop of Pfnek-2 does not affect kinase activity but confers sensitivity to the protein kinase inhibitor 4-(6-ethynyl-9H-purin-2-ylamino) benzene sulfonamide (NCL-00016066). Using a combination of in vitro kinase assays and mass spectrometry, (including phosphoproteomics) the study shows that this compound acts as an irreversible inhibitor to the mutant Pfnek2 likely through a covalent link with the introduced cysteine residue. In particular, this was shown by analysis of total protein mass using mass spectrometry which showed a shift in molecular weight of the mutant kinase in the presence of the inhibitor to be precisely equivalent to the molecular weight of NCL-00016066. A similar molecular weight shift was not observed in the wild type kinase. Importantly, this inhibitor has little activity towards the wild type Pfnek-2 and, therefore, has all the properties of an effective chemical genetic tool that could be employed to determine the cellular targets for Pfnek-2. Conclusions: Allelic replacement of wild-type Pfnek-2 with the mutated kinase will allow for targeted inhibition of Pfnek-2 with NCL-00016066 and hence pave the way for comparative studies aimed at understanding the biological role and transmission-blocking potential of Pfnek-2. © 2016 The Author(s)
- …