378 research outputs found

    Transforming growth factor-β and breast cancer: Lessons learned from genetically altered mouse models

    Get PDF
    Transforming growth factor (TGF)-βs are plausible candidate tumor suppressors in the breast. They also have oncogenic activities under certain circumstances, however. Genetically altered mouse models provide powerful tools to analyze the complexities of TGF-βaction in the context of the whole animal. Overexpression of TGF-β can suppress tumorigenesis in the mammary gland, raising the possibility that use of pharmacologic agents to enhance TGF-β function locally might be an effective method for the chemoprevention of breast cancer. Conversely, loss of TGF-β response increases spontaneous and induced tumorigenesis in the mammary gland. This confirms that endogenous TGF-βs have tumor suppressor activity in the mammary gland, and suggests that the loss of TGF-β receptors seen in some human breast hyperplasias may play a causal role in tumor development

    Informing patients of familial diabetes mellitus risk: How do they respond? A cross-sectional survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A strong family history of type 2 diabetes mellitus (DM) confers increased DM risk. This survey analysis determined whether patients who were informed by their doctors of familial DM risk acknowledged that risk and took steps to reduce it.</p> <p>Methods</p> <p>We conducted an analysis of the National <it>Health Styles 2004 </it>mail survey. All non-diabetic participants who responded to the question of whether their doctor had or had not informed them of their familial DM risk (<it>n </it>= 3,323) were compared for their risk-reducing behaviour and attitude to DM risk.</p> <p>Results</p> <p>Forty-one percent (<it>n </it>= 616) of the question responders that had DM family histories were informed by their doctors of their familial risk; the chance of being informed increased with the number of relatives that had the disease. Members of the informed group were more likely than those in the non-informed group to report lifestyle changes to prevent DM (odds ratio [OR] 4.3, 95% confidence interval [CI] 3.5–5.2) and being tested for DM (OR 2.9, 95% CI 2.4–3.6), although no significant improvement occurred in their U.S.-recommended exercise activity (OR 0.9, 95% CI 0.7–1.1). Overall, informed responders recognised both their familial and personal DM risk; most discussed diabetes with their family (69%), though less so with friends (42%); however, 44% of them still did not consider themselves to be at risk.</p> <p>Conclusion</p> <p>Responders who were informed by their doctors of being at familial DM risk reported greater incidences of lifestyle changes, DM screening, and awareness of risk than non-informed responders. Doctors were more likely to inform patients with stronger DM family histories. Identifying this higher risk group, either in isolation or in combination with other recognised risk factors, offers doctors the opportunity to target limited health promotion resources efficiently for primary DM prevention.</p

    LHC and lepton flavour violation phenomenology of a left-right extension of the MSSM

    Get PDF
    We study the phenomenology of a supersymmetric left-right model, assuming minimal supergravity boundary conditions. Both left-right and (B-L) symmetries are broken at an energy scale close to, but significantly below the GUT scale. Neutrino data is explained via a seesaw mechanism. We calculate the RGEs for superpotential and soft parameters complete at 2-loop order. At low energies lepton flavour violation (LFV) and small, but potentially measurable mass splittings in the charged scalar lepton sector appear, due to the RGE running. Different from the supersymmetric 'pure seesaw' models, both, LFV and slepton mass splittings, occur not only in the left- but also in the right slepton sector. Especially, ratios of LFV slepton decays, such as Br(τ~Rμχ10{\tilde\tau}_R \to \mu \chi^0_1)/Br(τ~Lμχ10{\tilde\tau}_L \to \mu \chi^0_1) are sensitive to the ratio of (B-L) and left-right symmetry breaking scales. Also the model predicts a polarization asymmetry of the outgoing positrons in the decay μ+e+γ\mu^+ \to e^+ \gamma, A ~ [0,1], which differs from the pure seesaw 'prediction' A=1$. Observation of any of these signals allows to distinguish this model from any of the three standard, pure (mSugra) seesaw setups.Comment: 43 pages, 17 figure

    Non-invasive assessment of coronary artery bypass graft patency using 16-slice computed tomography angiography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Invasive coronary angiography is the gold standard means of imaging bypass vessels and carries a small but potentially serious risk of local vascular complications, including myocardial infarction, stroke and death. We evaluated computed tomography as a non-invasive means of assessing graft patency.</p> <p>Methods</p> <p>Fifty patients with previous coronary artery bypass surgery who were listed for diagnostic coronary angiography underwent contrast enhanced computed tomography angiography using a 16-slice computed tomography scanner. Images were retrospectively gated to the electrocardiogram and two dimensional axial, multiplanar and three dimensional reconstructions acquired. Sensitivity, specificity, positive and negative predictive value, accuracy and level of agreement for detection of graft patency by multidetector computed tomography.</p> <p>Results</p> <p>A total of 116 grafts were suitable for analysis. The specificity of CT for the detection of graft patency was 100%, with a sensitivity of 92.8%, positive predictive value 100%, negative predictive value 85.8% and an accuracy of 94.8%. The kappa value of agreement between the two means of measuring graft patency was 0.9. Mean radiation dose was 9.0 ± 7.2 mSv for coronary angiography and 18.5 ± 4 mSv for computed tomography. Pooled analysis of eight studies, incorporating 932 grafts, confirmed a 97% accuracy for the detection of graft patency by multidetector computed tomography.</p> <p>Conclusion</p> <p>Computed tomography is an accurate, rapid and non-invasive method of assessing coronary artery bypass graft patency. However, this was achieved at the expense of an increase in radiation dose.</p

    Second malignancies after breast cancer: the impact of different treatment modalities

    Get PDF
    Treatment for non-metastatic breast cancer (BC) may be the cause of second malignancies in long-term survivors. Our aim was to investigate whether survivors present a higher risk of malignancy than the general population according to treatment received. We analysed data for 16 705 BC survivors treated at the Curie Institute (1981–1997) by either chemotherapy (various regimens), radiotherapy (high-energy photons from a 60Co unit or linear accelerator) and/or hormone therapy (2–5 years of tamoxifen). We calculated age-standardized incidence ratios (SIRs) for each malignancy, using data for the general French population from five regional registries. At a median follow-up 10.5 years, 709 patients had developed a second malignancy. The greatest increases in risk were for leukaemia (SIR: 2.07 (1.52–2.75)), ovarian cancer (SIR: 1.6 (1.27–2.04)) and gynaecological (cervical/endometrial) cancer (SIR: 1.6 (1.34–1.89); P<0.0001). The SIR for gastrointestinal cancer, the most common malignancy, was 0.82 (0.70–0.95; P<0.007). The increase in leukaemia was most strongly related to chemotherapy and that in gynaecological cancers to hormone therapy. Radiotherapy alone also had a significant, although lesser, effect on leukaemia and gynaecological cancer incidence. The increased risk of sarcomas and lung cancer was attributed to radiotherapy. No increased risk was observed for malignant melanoma, lymphoma, genitourinary, thyroid or head and neck cancer. There is a significantly increased risk of several kinds of second malignancy in women treated for BC, compared with the general population. This increase may be related to adjuvant treatment in some cases. However, the absolute risk is small

    TGF-β1 Induces an Age-Dependent Inflammation of Nerve Ganglia and Fibroplasia in the Prostate Gland Stroma of a Novel Transgenic Mouse

    Get PDF
    TGF-β1 is overexpressed in wound repair and in most proliferative disorders including benign prostatic hyperplasia and prostate cancer. The stromal microenvironment at these sites is reactive and typified by altered phenotype, matrix deposition, inflammatory responses, and alterations in nerve density and biology. TGF-β1 is known to modulate several stromal responses; however there are few transgenic models to study its integrated biology. To address the actions of TGF-β1 in prostate disorders, we targeted expression of an epitope tagged and constitutively active TGF-β1 via the enhanced probasin promoter to the murine prostate gland epithelium. Transgenic mice developed age-dependent lesions leading to severe, yet focal attenuation of epithelium, and a discontinuous basal lamina. These changes were associated with elevated fibroplasia and frequency of collagenous micronodules in collapsed acini, along with an induced inflammation in nerve ganglia and small vessels. Elevated recruitment of CD115+ myeloid cells but not mature macrophages was observed in nerve ganglia, also in an age-dependent manner. Similar phenotypic changes were observed using a human prostate epithelium tissue recombination xenograft model, where epithelial cells engineered to overexpress TGF-β1 induced fibrosis and altered matrix deposition concurrent with inflammation in the stromal compartment. Together, these data suggest that elevated TGF-β1 expression induces a fibroplasia stromal response associated with breach of epithelial wall structure and inflammatory involvement of nerve ganglia and vessels. The novel findings of ganglia and vessel inflammation associated with formation of collagenous micronodules in collapsed acini is important as each of these are observed in human prostate carcinoma and may play a role in disease progression

    Inactivation of the transforming growth factor β type II receptor in human small cell lung cancer cell lines

    Get PDF
    Transforming growth factor β (TGF-β) exerts a growth inhibitory effect on many cell types through binding to two types of receptors, the type I and II receptors. Resistance to TGF-β due to lack of type II receptor (RII) has been described in some cancer types including small cell lung cancer (SCLC). The purpose of this study was to examine the cause of absent RII expression in SCLC cell lines. Northern blot analysis showed that RII RNA expression was very weak in 16 of 21 cell lines. To investigate if the absence of RII transcript was due to mutations, we screened the poly-A tract for mutations, but no mutations were detected. Additional screening for mutations of the RII gene revealed a GG to TT base substitution in one cell line, which did not express RII. This mutation generates a stop codon resulting in predicted synthesis of a truncated RII of 219 amino acids. The nature of the mutation, which has not previously been observed in RII, has been linked to exposure to benzo[a]-pyrene, a component of cigarette smoke. Since RII has been mapped to chromosome 3p22 and nearby loci are often hypermethylated in SCLC, it was examined whether the lack of RII expression was due to hypermethylation. Southern blot analysis of the RII promoter did not show altered methylation patterns. The restriction endonuclease pattern of the RII gene was altered in two SCLC cell lines when digested with Sma 1. However, treatment with 5-aza-2′-deoxycytidine did not induce expression of RII mRNA. Our results indicate that in SCLC lack of RII mRNA is not commonly due to mutations and inactivation of RII transcription was not due to hypermethylation of the RII promoter or gene. Thus, these data show that in most cases of the SCLC cell lines, the RII gene and promoter is intact in spite of absent RII expression. However, the nature of the mutation found could suggest that it was caused by cigarette smoking. © 1999 Cancer Research Campaig

    An Image-Free Opto-Mechanical System for Creating Virtual Environments and Imaging Neuronal Activity in Freely Moving Caenorhabditis elegans

    Get PDF
    Non-invasive recording in untethered animals is arguably the ultimate step in the analysis of neuronal function, but such recordings remain elusive. To address this problem, we devised a system that tracks neuron-sized fluorescent targets in real time. The system can be used to create virtual environments by optogenetic activation of sensory neurons, or to image activity in identified neurons at high magnification. By recording activity in neurons of freely moving C. elegans, we tested the long-standing hypothesis that forward and reverse locomotion are generated by distinct neuronal circuits. Surprisingly, we found motor neurons that are active during both types of locomotion, suggesting a new model of locomotion control in C. elegans. These results emphasize the importance of recording neuronal activity in freely moving animals and significantly expand the potential of imaging techniques by providing a mean to stabilize fluorescent targets

    Synergism/complementarity of recombinant adenoviral vectors and other vaccination platforms during induction of protective immunity against malaria

    Full text link
    The lack of immunogenicity of most malaria antigens and the complex immune responses required for achieving protective immunity against this infectious disease have traditionally hampered the development of an efficient human malaria vaccine. The current boom in development of recombinant viral vectors and their use in prime-boost protocols that result in enhanced immune outcomes have increased the number of malaria vaccine candidates that access pre-clinical and clinical trials. In the frontline, adenoviruses and poxviruses seem to be giving the best immunization results in experimental animals and their mutual combination, or their combination with recombinant proteins (formulated in adjuvants and given in sequence or being given as protein/virus admixtures), has been shown to reach unprecedented levels of anti-malaria immunity that predictably will be somehow reproduced in the human setting. However, all this optimism was previously seen in the malaria vaccine development field without many real applicable results to date. We describe here the current state-of-the-art in the field of recombinant adenovirus research for malaria vaccine development, in particular referring to their use in combination with other immunogens in heterologous prime-boost protocols, while trying to simultaneously show our contributions and point of view on this subject
    corecore