1,979 research outputs found
In vivo analysis of the Escherichia coli ultrastructure by small-angle scattering
The flagellated Gram-negative bacterium Escherichia coli is one of the most studied microorganisms. Despite extensive studies as a model prokaryotic cell, the ultrastructure of the cell envelope at the nanometre scale has not been fully elucidated. Here, a detailed structural analysis of the bacterium using a combination of small-angle X-ray and neutron scattering (SAXS and SANS, respectively) and ultra-SAXS (USAXS) methods is presented. A multiscale structural model has been derived by incorporating well established concepts in soft-matter science such as a core-shell colloid for the cell body, a multilayer membrane for the cell wall and self-avoiding polymer chains for the flagella. The structure of the cell envelope was resolved by constraining the model by five different contrasts from SAXS, and SANS at three contrast match points and full contrast. This allowed the determination of the membrane electron-density
profile and the inter-membrane distances on a quantitative scale. The combination of USAXS and SAXS covers size scales from micrometres down to nanometres, enabling the structural elucidation of cells from the overall geometry down to organelles, thereby providing a powerful method for a noninvasive investigation of the ultrastructure. This approach may be applied for probing in vivo the effect of detergents, antibiotics and antimicrobial peptides on the bacterial cell wall
Bipolar querying of valid-time intervals subject to uncertainty
Databases model parts of reality by containing data representing properties of real-world objects or concepts. Often, some of these properties are time-related. Thus, databases often contain data representing time-related information. However, as they may be produced by humans, such data or information may contain imperfections like uncertainties. An important purpose of databases is to allow their data to be queried, to allow access to the information these data represent. Users may do this using queries, in which they describe their preferences concerning the data they are (not) interested in. Because users may have both positive and negative such preferences, they may want to query databases in a bipolar way. Such preferences may also have a temporal nature, but, traditionally, temporal query conditions are handled specifically. In this paper, a novel technique is presented to query a valid-time relation containing uncertain valid-time data in a bipolar way, which allows the query to have a single bipolar temporal query condition
Cytomolecular identification of individual wheat-wheat chromosome arm associations in wheat-rye hybrids
Chromosome pairing in the meiotic metaphase I of wheatrye
hybrids has been characterized by sequential genomic
and fluorescent in situ hybridization allowing not only the
discrimination of wheat and rye chromosomes, but also the
identification of the individual wheat and rye chromosome
arms involved in the chromosome associations. The majority
of associations (93.8%) were observed between the wheat
chromosomes. The largest number of wheat-wheat chromosome
associations (53%) was detected between the A and D
genomes, while the frequency of B-D and A-B associations
was significantly lower (32 and 8%, respectively). Among the
A-D chromosome associations, pairing between the 3AL and
3DL arms was observed with the highest frequency, while
the most frequent of all the chromosome associations (0.113/
cell) was found to be the 3DS-3BS. Differences in the pairing
frequency of the individual chromosome arms of wheat-rye
hybrids have been discussed in relation to the homoeologous
relationships between the constituent genomes of
hexaploid wheat
- …