18,926 research outputs found

    Constraints on the formation mechanism of the planetary mass companion of 2MASS 1207334-393254

    Get PDF
    In this paper we discuss the nature and the possible formation scenarios of the companion of the brown dwarf 2MASS 1207334-393254. We initially discuss the basic physical properties of this object and conclude that, although from its absolute mass (5MJup5M_{\rm Jup}), it is a planetary object, in terms of its mass ratio qq and of its separation aa with respect to the primary brown dwarf, it is consistent with the statistical properties of binaries with higher primary mass. We then explore the possible formation mechanism for this object. We show that the standard planet formation mechanism of core accretion is far too slow to form this object within 10 Myr, the observed age of the system. On the other hand, the alternative mechanism of gravitational instability (proposed both in the context of planet and of binary formation) may, in principle, work and form a system with the observed properties.Comment: 5 pages, MNRAS in pres

    ARES v2 - new features and improved performance

    Full text link
    Aims: We present a new upgraded version of ARES. The new version includes a series of interesting new features such as automatic radial velocity correction, a fully automatic continuum determination, and an estimation of the errors for the equivalent widths. Methods: The automatic correction of the radial velocity is achieved with a simple cross-correlation function, and the automatic continuum determination, as well as the estimation of the errors, relies on a new approach to evaluating the spectral noise at the continuum level. Results: ARES v2 is totally compatible with its predecessor. We show that the fully automatic continuum determination is consistent with the previous methods applied for this task. It also presents a significant improvement on its performance thanks to the implementation of a parallel computation using the OpenMP library.Comment: 4 pages, 2 Figures; accepted in A&A; ARES Webpage: www.astro.up.pt/~sousasag/are

    Semiquantitative theory of electronic Raman scattering from medium-size quantum dots

    Full text link
    A consistent semiquantitative theoretical analysis of electronic Raman scattering from many-electron quantum dots under resonance excitation conditions has been performed. The theory is based on random-phase-approximation-like wave functions, with the Coulomb interactions treated exactly, and hole valence-band mixing accounted for within the Kohn-Luttinger Hamiltonian framework. The widths of intermediate and final states in the scattering process, although treated phenomenologically, play a significant role in the calculations, particularly for well above band gap excitation. The calculated polarized and unpolarized Raman spectra reveal a great complexity of features and details when the incident light energy is swept from below, through, and above the quantum dot band gap. Incoming and outgoing resonances dramatically modify the Raman intensities of the single particle, charge density, and spin density excitations. The theoretical results are presented in detail and discussed with regard to experimental observations.Comment: Submitted to Phys. Rev.

    From stellar to planetary composition: Galactic chemical evolution of Mg/Si mineralogical ratio

    Get PDF
    The main goal of this work is to study element ratios that are important for the formation of planets of different masses. We study potential correlations between the existence of planetary companions and the relative elemental abundances of their host stars. We use a large sample of FGK-type dwarf stars for which precise Mg, Si, and Fe abundances have been derived using HARPS high-resolution and high-quality data. A first analysis of the data suggests that low-mass planet host stars show higher [Mg/Si] ratios, while giant planet hosts present [Mg/Si] that is lower than field stars. However, we found that the [Mg/Si] ratio significantly depends on metallicity through Galactic chemical evolution. After removing the Galactic evolution trend only the difference in the [Mg/Si] elemental ratio between low-mass planet hosts and non-hosts was present in a significant way. These results suggests that low-mass planets are more prevalent around stars with high [Mg/Si]. Our results demonstrate the importance of Galactic chemical evolution and indicate that it may play an important role in the planetary internal structure and composition.Comment: Accepted by A&A (Letter to the Editor

    Constraining planet structure and composition from stellar chemistry: trends in different stellar populations

    Get PDF
    The chemical composition of stars that have orbiting planets provides important clues about the frequency, architecture, and composition of exoplanet systems. We explore the possibility that stars from different galactic populations that have different intrinsic abundance ratios may produce planets with a different overall composition. We compiled abundances for Fe, O, C, Mg, and Si in a large sample of solar neighbourhood stars that belong to different galactic populations. We then used a simple stoichiometric model to predict the expected iron-to-silicate mass fraction and water mass fraction of the planet building blocks, as well as the summed mass percentage of all heavy elements in the disc. Assuming that overall the chemical composition of the planet building blocks will be reflected in the composition of the formed planets, we show that according to our model, discs around stars from different galactic populations, as well as around stars from different regions in the Galaxy, are expected to form rocky planets with significantly different iron-to-silicate mass fractions. The available water mass fraction also changes significantly from one galactic population to another. The results may be used to set constraints for models of planet formation and chemical composition. Furthermore, the results may have impact on our understanding of the frequency of planets in the Galaxy, as well as on the existence of conditions for habitability.Comment: Accepted for publication in Astronomy & Astrophysic
    • …
    corecore