216 research outputs found

    Reliable scalable symbolic computation: The design of SymGridPar2

    Get PDF
    Symbolic computation is an important area of both Mathematics and Computer Science, with many large computations that would benefit from parallel execution. Symbolic computations are, however, challenging to parallelise as they have complex data and control structures, and both dynamic and highly irregular parallelism. The SymGridPar framework (SGP) has been developed to address these challenges on small-scale parallel architectures. However the multicore revolution means that the number of cores and the number of failures are growing exponentially, and that the communication topology is becoming increasingly complex. Hence an improved parallel symbolic computation framework is required. This paper presents the design and initial evaluation of SymGridPar2 (SGP2), a successor to SymGridPar that is designed to provide scalability onto 10^5 cores, and hence also provide fault tolerance. We present the SGP2 design goals, principles and architecture. We describe how scalability is achieved using layering and by allowing the programmer to control task placement. We outline how fault tolerance is provided by supervising remote computations, and outline higher-level fault tolerance abstractions. We describe the SGP2 implementation status and development plans. We report the scalability and efficiency, including weak scaling to about 32,000 cores, and investigate the overheads of tolerating faults for simple symbolic computations

    Delocalization in harmonic chains with long-range correlated random masses

    Full text link
    We study the nature of collective excitations in harmonic chains with masses exhibiting long-range correlated disorder with power spectrum proportional to 1/kα1/k^{\alpha}, where kk is the wave-vector of the modulations on the random masses landscape. Using a transfer matrix method and exact diagonalization, we compute the localization length and participation ratio of eigenmodes within the band of allowed energies. We find extended vibrational modes in the low-energy region for α>1\alpha > 1. In order to study the time evolution of an initially localized energy input, we calculate the second moment M2(t)M_2(t) of the energy spatial distribution. We show that M2(t)M_2(t), besides being dependent of the specific initial excitation and exhibiting an anomalous diffusion for weakly correlated disorder, assumes a ballistic spread in the regime α>1\alpha>1 due to the presence of extended vibrational modes.Comment: 6 pages, 9 figure

    Delocalization and spin-wave dynamics in ferromagnetic chains with long-range correlated random exchange

    Full text link
    We study the one-dimensional quantum Heisenberg ferromagnet with exchange couplings exhibiting long-range correlated disorder with power spectrum proportional to 1/kα1/k^{\alpha}, where kk is the wave-vector of the modulations on the random coupling landscape. By using renormalization group, integration of the equations of motion and exact diagonalization, we compute the spin-wave localization length and the mean-square displacement of the wave-packet. We find that, associated with the emergence of extended spin-waves in the low-energy region for α>1\alpha > 1, the wave-packet mean-square displacement changes from a long-time super-diffusive behavior for α<1\alpha <1 to a long-time ballistic behavior for α>1\alpha > 1. At the vicinity of α=1\alpha =1, the mobility edge separating the extended and localized phases is shown to scale with the degree of correlation as Ec(α1)1/3E_c\propto (\alpha -1)^{1/3}.Comment: PRB to appea

    Tunable local polariton modes in semiconductors

    Get PDF
    We study the local states within the polariton bandgap that arise due to deep defect centers with strong electron-phonon coupling. Electron transitions involving deep levels may result in alteration of local elastic constants. In this case, substantial reversible transformations of the impurity polariton density of states occur, which include the appearance/disappearance of the polariton impurity band, its shift and/or the modification of its shape. These changes can be induced by thermo- and photo-excitation of the localized electron states or by trapping of injected charge carriers. We develop a simple model, which is applied to the OPO_P center in GaPGaP. Further possible experimental realizations of the effect are discussed.Comment: 7 pages, 3 figure

    Adult bone marrow stromal cell-based tissue-engineered aggrecan exhibits ultrastructure and nanomechanical properties superior to native cartilage

    Get PDF
    Objective: To quantify the structural characteristics and nanomechanical properties of aggrecan produced by adult bone marrow stromal cells (BMSCs) in peptide hydrogel scaffolds and compare to aggrecan from adult articular cartilage. Design: Adult equine BMSCs were encapsulated in 3D-peptide hydrogels and cultured for 21 days with TGF-β1 to induce chondrogenic differentiation. BMSC-aggrecan was extracted and compared with aggrecan from age-matched adult equine articular cartilage. Single molecules of aggrecan were visualized by atomic force microcopy-based imaging and aggrecan nanomechanical stiffness was quantified by high resolution force microscopy. Population-averaged measures of aggrecan hydrodynamic size, core protein structures and CS sulfation compositions were determined by size-exclusion chromatography, Western analysis, and fluorescence-assisted carbohydrate electrophoresis (FACE). Results: BMSC-aggrecan was primarily full-length while cartilage-aggrecan had many fragments. Single molecule measurements showed that core protein and GAG chains of BMSC-aggrecan were markedly longer than those of cartilage-aggrecan. Comparing full-length aggrecan of both species, BMSC-aggrecan had longer GAG chains, while the core protein trace lengths were similar. FACE analysis detected a ∼1:1 ratio of chondroitin-4-sulfate to chondroitin-6-sulfate in BMSC-GAG, a phenotype consistent with aggrecan from skeletally-immature cartilage. The nanomechanical stiffness of BMSC-aggrecan was demonstrably greater than that of cartilage-aggrecan at the same total sGAG (fixed charge) density. Conclusions: The higher proportion of full-length monomers, longer GAG chains and greater stiffness of the BMSC-aggrecan makes it biomechanically superior to adult cartilage-aggrecan. Aggrecan stiffness was not solely dependent on fixed charge density, but also on GAG molecular ultrastructure. These results support the use of adult BMSCs for cell-based cartilage repair.National Institutes of Health (U.S.) (NIH grant EB003805)National Institutes of Health (U.S.) (Grant AR33236)National Science Foundation (U.S.) (NSF grant NIRT-0403903)National Science Foundation (U.S.) (CMMI-0758651)National Institutes of Health (U.S.) (NIH Molecular, Cell, and Tissue Biomechanics Training Grant)Massachusetts Institute of Technology (Whitaker Health Science Fund Fellowship

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging

    Get PDF
    We present a measurement of the top quark pair (ttˉt\bar{t}) production cross section (σttˉ\sigma_{t\bar{t}}) in ppˉp\bar{p} collisions at s=1.96\sqrt{s}=1.96 TeV using 230 pb1^{-1} of data collected by the D0 experiment at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), missing transverse energy, and jets in the final state. We employ lifetime-based b-jet identification techniques to further enhance the ttˉt\bar{t} purity of the selected sample. For a top quark mass of 175 GeV, we measure σttˉ=8.61.5+1.6(stat.+syst.)±0.6(lumi.)\sigma_{t\bar{t}}=8.6^{+1.6}_{-1.5}(stat.+syst.)\pm 0.6(lumi.) pb, in agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events

    Get PDF
    We present a measurement of the top quark pair ttbar production cross section in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1} of data collected by the DO detector at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), large missing transverse energy, and at least four jets, and extract the ttbar content of the sample based on the kinematic characteristics of the events. For a top quark mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1} (syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let

    Measurement of the Isolated Photon Cross Section in p-pbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    The cross section for the inclusive production of isolated photons has been measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV and have pseudorapidity |eta|<0.9. The cross section is compared with the results from two next-to-leading order perturbative QCD calculations. The theoretical predictions agree with the measurement within uncertainties.Comment: 7 pages, 5 figures, submitted to Phys.Lett.

    Species concepts in Calonectria (Cylindrocladium)

    Get PDF
    Species of Calonectria and their Cylindrocladium anamorphs are important plant pathogens worldwide. At present 52 Cylindrocladium spp. and 37 Calonectria spp. are recognised based on sexual compatibility, morphology and phylogenetic inference. The polyphasic approach of integrating Biological, Morphological and Phylogenetic Species Concepts has revolutionised the taxonomy of fungi. This review aims to present an overview of published research on the genera Calonectria and Cylindrocladium as they pertain to their taxonomic history. The nomenclature as well as future research necessary for this group of fungi are also briefly discussed
    corecore