179 research outputs found

    Performance of Basic Life Support by Lifeboat Crewmembers While Wearing a Survival Suit and Life Vest:A Randomized Controlled Trial

    Get PDF
    Introduction: Crewmembers of the “Royal Netherlands Sea Rescue Institution” (KNRM) lifeboats must wear heavy survival suits with integrated lifejackets. This and the challenging environment onboard (boat movements, limited space) might influence Basic Life Support (BLS) performance. The primary objective of this study was to assess the impact of the protective gear on single-rescuer BLS-quality. Material and Methods: Sixty-five active KNRM crewmembers who had recently undergone a BLS-refresher course were randomized to wear either their protective gear (n = 32) or their civilian clothes (n = 33; control group) and performed five 2-min sessions of single rescuer BLS on a mannequin on dry land. BLS-quality was assessed according to Dutch and European Resuscitation guidelines. A between group analysis (Mann-Whitney U) and a repeated within group analysis of both groups (Friedman test) were performed. Results: There were no major demographic differences between the groups. The protective gear did not significant impair BLS-quality. It was also not associated with a significant increase in the perceived exertion of BLS (Borg's Rating scale). Compression depth, compression frequency, the percentage of correct compression depth and of not leaning on the thorax, and ventilation volumes in both groups were suboptimal when evaluated according to the BLS-guidelines. Conclusions: The protective gear worn by KNRM lifeboat-crewmembers does not have a significant influence on BLS-quality under controlled study conditions. The impact and significance on outcome in real life situations needs to be studied further. This study provides valuable input for optimizing the BLS-skills of lifeboat crewmembers

    Modelling Primordial Gas in Numerical Cosmology

    Get PDF
    We have reviewed the chemistry and cooling behaviour of low-density (n<10^4 cm^-3) primordial gas and devised a cooling model wich involves 19 collisional and 9 radiative processes and is applicable for temperatures in the range (1 K < T < 10^8 K). We derived new fits of rate coefficients for the photo-attachment of neutral hydrogen, the formation of molecular hydrogen via H-, charge exchange between H2 and H+, electron detachment of H- by neutral hydrogen, dissociative recombination of H2 with slow electrons, photodissociation of H2+, and photodissociation of H2. Further it was found that the molecular hydrogen produced through the gas-phase processes, H2+ + H -> H2 + H+, and H- + H -> H2 + e-, is likely to be converted into its para configuration on a faster time scale than the formation time scale. We have tested the model extensively and shown it to agree well with former studies. We further studied the chemical kinetics in great detail and devised a minimal model which is substantially simpler than the full reaction network but predicts correct abundances. This minimal model shows convincingly that 12 collisional processes are sufficient to model the H, He, H+, H-, He+, He++, and H2 abundances in low density primordial gas for applications with no radiation fields.Comment: 26 pages of text, 4 tables, and 6 eps figures. The paper is also available at http://zeus.ncsa.uiuc.edu:8080/~abel/PGas/bib.html Submitted to New Astronomy. Note that some of the hyperlinks given in the paper are still under constructio

    Modelling CO formation in the turbulent interstellar medium

    Full text link
    We present results from high-resolution three-dimensional simulations of turbulent interstellar gas that self-consistently follow its coupled thermal, chemical and dynamical evolution, with a particular focus on the formation and destruction of H2 and CO. We quantify the formation timescales for H2 and CO in physical conditions corresponding to those found in nearby giant molecular clouds, and show that both species form rapidly, with chemical timescales that are comparable to the dynamical timescale of the gas. We also investigate the spatial distributions of H2 and CO, and how they relate to the underlying gas distribution. We show that H2 is a good tracer of the gas distribution, but that the relationship between CO abundance and gas density is more complex. The CO abundance is not well-correlated with either the gas number density n or the visual extinction A_V: both have a large influence on the CO abundance, but the inhomogeneous nature of the density field produced by the turbulence means that n and A_V are only poorly correlated. There is a large scatter in A_V, and hence CO abundance, for gas with any particular density, and similarly a large scatter in density and CO abundance for gas with any particular visual extinction. This will have important consequences for the interpretation of the CO emission observed from real molecular clouds. Finally, we also examine the temperature structure of the simulated gas. We show that the molecular gas is not isothermal. Most of it has a temperature in the range of 10--20 K, but there is also a significant fraction of warmer gas, located in low-extinction regions where photoelectric heating remains effective.Comment: 37 pages, 15 figures; minor revisions, matches version accepted by MNRA

    MCR-ALS on metabolic networks: Obtaining more meaningful pathways

    Full text link
    [EN] With the aim of understanding the flux distributions across a metabolic network, i.e. within living cells, Principal Component Analysis (PCA) has been proposed to obtain a set of orthogonal components (pathways) capturing most of the variance in the flux data. The problems with this method are (i) that no additional information can be included in the model, and (ii) that orthogonality imposes a hard constraint, not always reasonably. To overcome these drawbacks, here we propose to use a more flexible approach such as Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) to obtain this set of biological pathways through the network. By using this method, different constraints can be included in the model, and the same source of variability can be present in different pathways, which is reasonable from a biological standpoint. This work follows a methodology developed for Pichia pastoris cultures grown on different carbon sources, lately presented in GonzĂĄlez-MartĂ­nez et al. (2014). In this paper a different grey modelling approach, which aims to incorporate a priori knowledge through constraints on the modelling algorithms, is applied to the same case of study. The results of both models are compared to show their strengths and weaknesses.Research in this study was partially supported by the Spanish Ministry of Science and Innovation and FEDER funds from the European Union through grants DPI2011-28112-C04-01 and DPI2011-28112-C04-02. The authors are also grateful to Biopolis SL for supporting this research.Folch-Fortuny, A.; Tortajada Serra, M.; Prats-MontalbĂĄn, JM.; Llaneras Estrada, F.; PicĂł Marco, JA.; Ferrer Riquelme, AJ. (2015). MCR-ALS on metabolic networks: Obtaining more meaningful pathways. Chemometrics and Intelligent Laboratory Systems. 142:293-303. https://doi.org/10.1016/j.chemolab.2014.10.004S29330314

    The micro-structure of the intergalactic medium I: the 21cm signature from dynamical minihaloes

    Get PDF
    A unified description is provided for the 21cm signatures arising from minihaloes against a bright background radio source and against the Cosmic Microwave Background (CMB), within the context of a dynamical collapsing cosmological spherical halo model. The equivalent width distribution of the resulting 21cm forest is computed for LCDM cosmologies, along with the brightness temperature differential relative to the CMB. The effects of an ambient Ly-alpha radiation field and heating of the IGM on the signatures are included. It is shown that the dynamical effects of heating substantially suppress absorption features in the 21cm forest with observed equivalent widths exceeding 0.15 kHz. It is demonstrated how measurements of excess fluctuations beyond detector noise could make a statistical detection of the weaker absorption features against a bright background radio source. It is also shown that a Ly-alpha radiation field only a few percent the thermalisation rate is sufficient to render the minihalo signal against the CMB negligible compared with the signal from the diffuse IGM component. The 21cm signals are found to be very sensitive to the amount of small scale power in the primordial density fluctuation spectrum. The effects of gas cooling via radiative atomic and molecular processes and of star formation on setting the maximum mass of the minihaloes giving rise to a 21cm signal are included, with allowance made for the suppression of molecular hydrogen formation by an ambient UV radiation field.Comment: Substantial revision: paper restructured; hydrodynamical model with heating included; discussion of statistical detection of absorption fluctuations from 21cm forest added. 34 pages; 34 figures. Definitive version published in Monthly Notice

    Selectivity control in Pt-catalyzed cinnamaldehyde hydrogenation

    Get PDF
    Chemoselectivity is a cornerstone of catalysis, permitting the targeted modification of specific functional groups within complex starting materials. Here we elucidate key structural and electronic factors controlling the liquid phase hydrogenation of cinnamaldehyde and related benzylic aldehydes over Pt nanoparticles. Mechanistic insight from kinetic mapping reveals cinnamaldehyde hydrogenation is structure-insensitive over metallic platinum, proceeding with a common Turnover Frequency independent of precursor, particle size or support architecture. In contrast, selectivity to the desired cinnamyl alcohol product is highly structure sensitive, with large nanoparticles and high hydrogen pressures favoring C=O over C=C hydrogenation, attributed to molecular surface crowding and suppression of sterically-demanding adsorption modes. In situ vibrational spectroscopies highlight the role of support polarity in enhancing C=O hydrogenation (through cinnamaldehyde reorientation), a general phenomenon extending to alkyl-substituted benzaldehydes. Tuning nanoparticle size and support polarity affords a flexible means to control the chemoselective hydrogenation of aromatic aldehydes

    Lipidomics Reveals Multiple Pathway Effects of a Multi-Components Preparation on Lipid Biochemistry in ApoE*3Leiden.CETP Mice

    Get PDF
    Background: Causes and consequences of the complex changes in lipids occurring in the metabolic syndrome are only partly understood. Several interconnected processes are deteriorating, which implies that multi-target approaches might be more successful than strategies based on a limited number of surrogate markers. Preparations from Chinese Medicine (CM) systems have been handed down with documented clinical features similar as metabolic syndrome, which might help developing new intervention for metabolic syndrome. The progress in systems biology and specific animal models created possibilities to assess the effects of such preparations. Here we report the plasma and liver lipidomics results of the intervention effects of a preparation SUB885C in apolipoprotein E3 Leiden cholesteryl ester transfer protein (ApoE*3Leiden.CETP) mice. SUB885C was developed according to the principles of CM for treatment of metabolic syndrome. The cannabinoid receptor type 1 blocker rimonabant was included as a general control for the evaluation of weight and metabolic responses. Methodology/Principal Findings: ApoE*3Leiden.CETP mice with mild hypercholesterolemia were divided into SUB885C-, rimonabant- and non-treated control groups. SUB885C caused no weight loss, but significantly reduced plasma cholesterol (-49%, p <0.001), CETP levels (-31%,
    • …
    corecore