225 research outputs found

    On the universal X-ray luminosity function of binary X-ray sources in galaxies

    Get PDF
    The empirically determined universal power-law shape of X-ray luminosity function of high mass X-ray binaries in galaxies is explained by fundamental mass-luminosity and mass-radius relations for massive stars.Comment: 4 pages, plain LaTeX, no figures. Submitted to Astronomy Letter

    Supergiant Fast X-ray Transients uncovered by the EXTraS project: flares reveal the development of magnetospheric instability in accreting neutron stars

    Get PDF
    The low luminosity, X-ray flaring activity, of the sub-class of high mass X-ray binaries called Supergiant Fast X-ray Transients, has been investigated using XMM-Newton public observations, taking advantage of the products made publicly available by the EXTraS project. One of the goals of EXTraS was to extract from the XMM-Newton public archive information on the aperiodic variability of all sources observed in the soft X-ray range with EPIC (0.2-12 keV). Adopting a Bayesian block decomposition of the X-ray light curves of a sample of SFXTs, we picked out 144 X-ray flares, covering a large range of soft X-ray luminosities (1e32-1e36 erg/s). We measured temporal quantities, like the rise time to and the decay time from the peak of the flares, their duration and the time interval between adjacent flares. We also estimated the peak luminosity, average accretion rate and energy release in the flares. The observed soft X-ray properties of low-luminosity flaring activity from SFXTs is in qualitative agreement with what is expected by the application of the Rayleigh-Taylor instability model in accreting plasma near the neutron star magnetosphere. In the case of rapidly rotating neutron stars, sporadic accretion from temporary discs cannot be excluded.Comment: Accepted for publication in MNRAS (accepted 2019 May 1; received 2019 April 30; in original form 2019 February 25). 22 pages, 16 figures, 3 tables

    Correlation of High-Resolution X-Ray Micro-Computed Tomography with Bioluminescence Imaging of Multiple Myeloma Growth in a Xenograft Mouse Model

    Get PDF
    Multiple myeloma (MM) is an incurable B-cell neoplasia in which progressive skeletal lesions are a characteristic feature. Earlier we established an animal model for human MM in the immune-deficient RAG2-/-γc-/- mouse, in which the growth of luciferase-transduced MM cells was visualized using noninvasive bioluminescence imaging (BLI). This model appeared well suited to study disease progression and response to therapy by identifying the location of various foci of MM tumor growth scattered throughout the skeleton and at subsequent time points the quantitative assessment of the tumor load by using BLI. We report here on the corresponding high-resolution X-ray micro-computed tomographic (micro-CT) analysis to study skeletal defects in the mice with full-blown MM. Several anatomical derangements were observed, including abnormalities in geometry and morphology, asymmetrical bone structures, decreased overall density in the remaining bone, loss of trabecular bone mass, destruction of the inner microarchitecture, as well as cortical perforations. Using the combination of BLI, micro-CT imaging, and immune-histopathological techniques, we found a high correlation between the micro-CT-identified lesions, exact tumor location, and infiltration leading to structural lesions and local bone deformation. This confirms that this animal model strongly resembles human MM and has the potential for studying the biology of MM growth and for preclinical testing of novel therapies for MM and for repair of MM-induced bone lesions

    The Cauchy convergence of T and P-approximant templates for test-mass Kerr binary systems

    Full text link
    In this work we examine the Cauchy convergence of both post-Newtonian (T-approximant) and re-summed post-Newtonian (P-approximant) templates for the case of a test-mass orbiting a Kerr black hole along a circular equatorial orbit. The Cauchy criterion demands that the inner product between the nn and n+1n+1 order approximation approaches unity, as we increase the order of approximation. In previous works, it has been shown that we achieve greater fitting factors and better parameter estimation using the P-approximant templates for both Schwarzschild and Kerr black holes. In this work, we show that the P-approximant templates also display a faster Cauchy convergence making them a superior template to the standard post-Newtonian templates.Comment: 5 pages, Replaced with shortened published versio

    Probing the neutron star spin evolution in the young SMC Be/X-ray binary SXP 1062

    Full text link
    The newly discovered Be/X-ray binary in the Small Magellanic Cloud, SXP 1062, provides the first example of a robust association with a supernova remnant (SNR). The short age estimated for the SNR qualifies SXP 1062 as the youngest known source in its class, tau ~ 1e4 yr. As such, it allows to test current models of magneto-rotational evolution of neutron stars ina still unexplored regime. Here we discuss possible evolutionary scenarios for SXP 1062 in the attempt to reconcile its long spin period, P=1062 s, and short age. Although several options can be considered, like an anomalously long initial period or the presence of a fossil disc, our results indicate that SXP 1062 may host a neutron star born with a large initial magnetic field, typically in excess of ~ 1e14 G, which then decayed to ~ 1e13 G.Comment: 5 pages, 1 figure, modified to incorporate referee's points, accepted for publication in MNRA

    Constraints on the Size of Extra Dimensions from the Orbital Evolution of Black-Hole X-Ray Binaries

    Full text link
    One of the plausible unification schemes in physics considers the observable universe to be a 4-dimensional surface (the "brane") embedded in a higher-dimensional curved spacetime (the "bulk"). In such braneworld gravity models with infinitely large extra dimensions, black holes evaporate fast through the emission of the additional gravitational degrees of freedom, resulting in lifetimes of stellar-mass black holes that are significantly smaller than the Hubble time. We show that the predicted evaporation rate leads to a change in the orbital period of X-ray binaries harboring black holes that is observable with current instruments. We obtain an upper limit on the rate of change of the orbital period of the binary A0620-00 and use it to constrain the asymptotic curvature radius of the extra dimension to a value comparable to the one obtained by table-top experiments. Furthermore we argue that any measurement of a period increase for low-mass X-ray binaries with a high mass ratio is evidence for new physics beyond general relativity and the standard model.Comment: accepted for publication in ApJ, typo correcte

    Detecting gravitational waves from test-mass bodies orbiting a Kerr black hole with P-approximant templates

    Full text link
    In this study we apply post-Newtonian (T-approximants) and resummed post-Newtonian (P-approximants) to the case of a test-particle in equatorial orbit around a Kerr black hole. We compare the two approximants by measuring their effectualness (i.e. larger overlaps with the exact signal), and faithfulness (i.e. smaller biases while measuring the parameters of the signal) with the exact (numerical) waveforms. We find that in the case of prograde orbits, T-approximant templates obtain an effectualness of ~0.99 for spins q < 0.75. For 0.75 < q < 0.95, the effectualness drops to about 0.82. The P-approximants achieve effectualness of > 0.99 for all spins up to q = 0.95. The bias in the estimation of parameters is much lower in the case of P-approximants than T-approximants. We find that P-approximants are both effectual and faithful and should be more effective than T-approximants as a detection template family when q > 0. For q < 0 both T- and P-approximants perform equally well so that either of them could be used as a detection template family. However, for parameter estimation, the P-approximant templates still outperforms the T-approximants.Comment: 11 Pages - 9 figures. Accepted for publication. Proceedings of GWDAW 9. Special edition of Classical and Quantum Gravit

    Properties of the Galactic population of cataclysmic variables in hard X-rays

    Full text link
    We measure the spatial distribution and hard X-ray luminosity function of cataclysmic variables (CVs) using the INTEGRAL all-sky survey in the 17-60 keV energy band. The vast majority of the INTEGRAL detected CVs are intermediate polars with luminosities in the range 10^{32}-10^{34} erg/sec. The scale height of the Galactic disk population of CVs is found to be 130{+90}{-50} pc. The CV luminosity function measured with INTEGRAL in hard X-rays is compatible with that previously determined at lower energies (3--20 keV) using a largely independent sample of sources detected by RXTE (located at |b|>10deg as opposed to the INTEGRAL sample, strongly concentrated to the Galactic plane). The cumulative 17-60 keV luminosity density of CVs per unit stellar mass is found to be (1.3+/-0.3)x10^{27} erg/sec/Msun and is thus comparable to that of low-mass X-ray binaries in this energy band. Therefore, faint but numerous CVs are expected to provide an important contribution to the cumulative hard X-ray emission of galaxies.Comment: 8 pages, 8 figures. Submitted to A&
    corecore