10 research outputs found

    Characterization of novel isoforms and evaluation of SNF2L/SMARCA1 as a candidate gene for X-linked mental retardation in 12 families linked to Xq25-26

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in genes whose products modify chromatin structure have been recognized as a cause of X-linked mental retardation (XLMR). These genes encode proteins that regulate DNA methylation (<it>MeCP2</it>), modify histones (<it>RSK2 </it>and <it>JARID1C</it>), and remodel nucleosomes through ATP hydrolysis (<it>ATRX</it>). Thus, genes encoding other chromatin modifying proteins should also be considered as disease candidate genes. In this work, we have characterized the <it>SNF2L </it>gene, encoding an ATP-dependent chromatin remodeling protein of the ISWI family, and sequenced the gene in patients from 12 XLMR families linked to Xq25-26.</p> <p>Methods</p> <p>We used an <it>in silico </it>and RT-PCR approach to fully characterize specific SNF2L isoforms. Mutation screening was performed in 12 patients from individual families with syndromic or non-syndromic XLMR. We sequenced each of the 25 exons encompassing the entire coding region, complete 5' and 3' untranslated regions, and consensus splice-sites.</p> <p>Results</p> <p>The <it>SNF2L </it>gene spans 77 kb and is encoded by 25 exons that undergo alternate splicing to generate several distinct transcripts. Specific isoforms are generated through the alternate use of exons 1 and 13, and by the use of alternate donor splice sites within exon 24. Alternate splicing within exon 24 removes a NLS sequence and alters the subcellular distribution of the SNF2L protein. We identified 3 single nucleotide polymorphisms but no mutations in our 12 patients.</p> <p>Conclusion</p> <p>Our results demonstrate that there are numerous splice variants of SNF2L that are expressed in multiple cell types and which alter subcellular localization and function. <it>SNF2L </it>mutations are not a cause of XLMR in our cohort of patients, although we cannot exclude the possibility that regulatory mutations might exist. Nonetheless, <it>SNF2L </it>remains a candidate for XLMR localized to Xq25-26, including the Shashi XLMR syndrome.</p

    Characterization of novel isoforms and evaluation of SNF2L/SMARCA1 as a candidate gene for X-linked mental retardation in 12 families linked to Xq25-26

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in genes whose products modify chromatin structure have been recognized as a cause of X-linked mental retardation (XLMR). These genes encode proteins that regulate DNA methylation (<it>MeCP2</it>), modify histones (<it>RSK2 </it>and <it>JARID1C</it>), and remodel nucleosomes through ATP hydrolysis (<it>ATRX</it>). Thus, genes encoding other chromatin modifying proteins should also be considered as disease candidate genes. In this work, we have characterized the <it>SNF2L </it>gene, encoding an ATP-dependent chromatin remodeling protein of the ISWI family, and sequenced the gene in patients from 12 XLMR families linked to Xq25-26.</p> <p>Methods</p> <p>We used an <it>in silico </it>and RT-PCR approach to fully characterize specific SNF2L isoforms. Mutation screening was performed in 12 patients from individual families with syndromic or non-syndromic XLMR. We sequenced each of the 25 exons encompassing the entire coding region, complete 5' and 3' untranslated regions, and consensus splice-sites.</p> <p>Results</p> <p>The <it>SNF2L </it>gene spans 77 kb and is encoded by 25 exons that undergo alternate splicing to generate several distinct transcripts. Specific isoforms are generated through the alternate use of exons 1 and 13, and by the use of alternate donor splice sites within exon 24. Alternate splicing within exon 24 removes a NLS sequence and alters the subcellular distribution of the SNF2L protein. We identified 3 single nucleotide polymorphisms but no mutations in our 12 patients.</p> <p>Conclusion</p> <p>Our results demonstrate that there are numerous splice variants of SNF2L that are expressed in multiple cell types and which alter subcellular localization and function. <it>SNF2L </it>mutations are not a cause of XLMR in our cohort of patients, although we cannot exclude the possibility that regulatory mutations might exist. Nonetheless, <it>SNF2L </it>remains a candidate for XLMR localized to Xq25-26, including the Shashi XLMR syndrome.</p

    Frequent CXCR4 tropism of HIV-1 subtype A and CRF02_AG during late-stage disease - indication of an evolving epidemic in West Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV-1 is one of the fastest evolving pathogens, and is distinguished by geographic and genetic variants that have been classified into different subtypes and circulating recombinant forms (CRFs). Early in infection the primary coreceptor is CCR5, but during disease course CXCR4-using HIV-1 populations may emerge. This has been correlated with accelerated disease progression in HIV-1 subtype B. Basic knowledge of HIV-1 coreceptor tropism is important due to the recent introduction of coreceptor antagonists in antiretroviral therapy, and subtype-specific differences regarding how frequently HIV-1 CXCR4-using populations appear in late-stage disease need to be further investigated. To study how frequently CXCR4-using populations appear in late-stage disease among HIV-1 subtype A and CRF02_AG, we evaluated the accuracy of a recombinant virus phenotypic assay for these subtypes, and used it to determine the HIV-1 coreceptor tropism of plasma samples collected during late-stage disease in Guinea-Bissau. We also performed a genotypic analysis and investigated subtype-specific differences in the appearance of CXCR4 tropism late in disease.</p> <p>Results</p> <p>We found that the recombinant virus phenotypic assay accurately predicted HIV-1 coreceptor tropism of subtype A and CRF02_AG. Over the study period (1997-2007), we found an increasing and generally high frequency of CXCR4 tropism (86%) in CRF02_AG. By sequence analysis of the V3 region of our samples we developed a novel genotypic rule for predicting CXCR4 tropism in CRF02_AG, based on the combined criteria of the total number of charged amino acids and net charge. This rule had higher sensitivity than previously described genotypic rules and may be useful for development of future genotypic tools for this CRF. Finally, we conducted a literature analysis, combining data of 498 individuals in late-stage disease, and found high amounts of CXCR4 tropism for all major HIV-1 subtypes (60-77%), except for subtype C (15%).</p> <p>Conclusions</p> <p>The increase in CXCR4 tropism over time suggests an evolving epidemic of CRF02_AG. The results of the literature analysis demonstrate the need for further studies investigating subtype-specific emergence for CXCR4-tropism; this may be particularly important due to the introduction of CCR5-antagonists in HIV treatment regimens.</p

    Conservation of fragmented grasslands as part of the urban green infrastructure: how important are species diversity, functional diversity and landscape functionality?

    No full text
    Natural remnants, such as fragmented grasslands form an integral part of the urban green infrastructure in the Grassland biome of South Africa. Nearly 30 % of natural grasslands are transformed with only 1 % formally conserved. Since grassland habitats are globally regarded as a biodiversity conservation priority, protection should be accorded outside formal conservation areas as well. However, urban grassland fragments are often regarded as highly transformed, and are therefore targeted for development rather than conservation. The aim of this study was to compare plant species composition, −diversity and -functional diversity, as well as the fine-scale biophysical landscape functionality of grassland fragments in urban and exurban areas in the vulnerable Rand Highveld Grassland vegetation type in the Tlokwe Municipal area of South Africa. Thirty selected grassland fragments were investigated along an urbanisation (urban-exurban) gradient that was quantified using several demographic- and physical variables as well as landscape metrics, each reflecting a pattern or process associated with urbanisation. Plant species composition, −diversity, and -life history traits were determined in randomly selected sample plots. Functional diversity indices were also calculated to describe the composition and distribution of plant functional traits in the selected grassland fragments. Additionally, landscape functionality, in terms of how effectively the landscape is functioning as a biophysical system, was determined using the Landscape Function Analysis (LFA) method. LFA provides information such as fine-scale resource conserving patchiness, soil surface stability, infiltration, and nutrient cycling. The fine-scale biophysical landscape function of urban and exurban landscapes are comparable, indicating that urban grassland fragments are worthy of conservation on a biophysical landscape function scale. However, differences in plant species diversity, functional trait composition, and plant functional diversity were evident

    Conservation of fragmented grasslands as part of the urban green infrastructure: how important are species diversity, functional diversity and landscape functionality?

    No full text
    corecore