1,561 research outputs found

    Multi-megahertz IPT systems for biomedical devices applications

    Get PDF
    This paper investigates the main design constraints for the optimisation of an inductive power transfer (IPT) link for recharging implantable medical devices [1], and presents the potential advantages of operating in the multi-MHz range for such applications. The design proposed in this paper offers a fast charging solution, allowing patients to recharge their active medical implants every 4-5 years for 40% of its battery capability. The main challenge consists of obtaining good coupling and effective Q factor of the receiver coil, while minimizing the overall increase in size of the medical implant. Analysis obtained through electromagnetic simulations with CST Studio Suite for a 13.56 MHz, 1 W system suggests that it is possible to achieve a relatively high theoretical link efficiency of 66%, while keeping surface temperature increases and specific absorption rate (SAR) within the limits established in EN 45502 [2] and ICNIRP 1998 [3]. The experimental results show two feasible systems with different separation distances between the device's metallic case and the receiver coil, achieving transfer efficiencies [11] of 41% and 53% for separations of 1 mm and 7 mm, respectively

    Induced voltage estimation from class EF switching harmonics in HF-IPT systems

    Get PDF
    One of the advantages of high-frequency inductive power transfer systems is the high tolerance to misalignment and large air-gaps. However, the inherently large magnetic field volumes can lead to coupling of additional foreign objects with the primary, causing possible detuning of the system and heating of the objects. These foreign objects and the conditions of the local environment can load the transmitter, which changes the induced voltage on the primary side. Unfortunately, the induced voltage is not directly measurable in an operating transmitter and the most straightforward way of calculating this variable, through a measurement of primary coil current and voltage, can cause a significant decrease in quality factor which reduces system performance. An integrated solution capable of estimating the induced voltage through other less invasive measurements in the primary is needed to ensure safety of operation through foreign object detection. Knowledge of the induced voltage can also be used to correct tuning mismatches where both sides of the link are active (i.e., in synchronous rectification and bidirectional systems). In this article, multiple candidate variables for estimating the induced voltage are assessed based on factors such as measurement practicality and estimation accuracy. It is demonstrated for the first time that a solution which is based on the measurement of only two variables, the amplitude of the fundamental frequency of the switching waveform and input current, can achieve state-of-the-art induced voltage estimation accuracy. These two variables, which can be obtained using simple cost-effective analogue circuitry, are used in a Gaussian process to generate a regression model. This is used to estimate induced voltages at any angle in an approximate magnitude range of 0–20 V with a normalized root-mean-square error of 1% for the real part and 1.5% for the imaginary part. This corresponds to detecting a plastic container with 1 kg of saline so..

    A 13.56 MHz bidirectional IPT system with wirelessly synchronised transceivers for ultra-low coupling operation

    Get PDF
    This paper presents a high-frequency inductive power transfer (HF-IPT) system with bidirectional capability employing a new wireless synchronisation method. Synchronisation is achieved by transmitting a reference ultra high frequency tone (433.92 MHz) that is stepped down to 13.56 MHz in each transceiver. This allows the operating frequency to be locked across the two sides of the system. Afterwards, a phase search is performed looking for maximum power throughput, determining the phase at the point of resonance (i.e., no reflected reactances). The experimental implementation is achieved with two back-to-back Class EF coil-drivers driven by independent synchronisation circuits. In the experimental setup a constant input voltage is set for each of the two coil-drivers by implementing a source-sink configuration, emulating a bidirectional DC-DC conversion stage at each side. Experimental results show successful transceiver synchronisation, and 4 W were transferred from one end to the other and conversely at an ultra-low coupling of 1.6%. This proves that the combination of the load-independent Class EF transceivers and the synchronisation technique introduced herein is suitable for applications that require large tolerance to misalignment and air gaps larger than one coil diameter, such as in micro e-mobility

    Characterisation of high frequency inductive power transfer receivers using pattern recognition on the transmit side waveforms

    Get PDF
    This paper demonstrates the characterisation of inductively coupled receivers for high frequency inductive power transfer (HF-IPT) systems using pattern recognition on the inverter waveforms at the transmit side. The impedance reflected by the candidate receivers to the transmit coil was estimated using a model programmed to associate the experimental drain-voltage waveforms of the inverter when it drives a receiver under test to those when driving known loads. The necessity of employing this technique is due to the difficulty of accurately measuring current and voltage across the coil given the parasitic effects of probing and the precise skewing required to measure an impedance, especially at high Q-factor. The proposed technique is convenient for characterising and comparing the impedance reflected by candidate receivers for a particular application where there is a choice to be made with respect to the rectifier topologies and semiconductor technologies. Experimental results, using a 13.56 MHz 100 W inductive power transfer system, were obtained for a full-wave Class D rectifier using silicon (Si) and silicon carbide (SiC) Schottky diodes, and two Class E rectifiers using SiC diodes

    Deletion within the Src homology domain 3 of Bruton's tyrosine kinase resulting in X-linked agammaglobulinemia (XLA).

    Get PDF
    The gene responsible for X-linked agammaglobulinemia (XLA) has been recently identified to code for a cytoplasmic tyrosine kinase (Bruton's agammaglobulinemia tyrosine kinase, BTK), required for normal B cell development. BTK, like many other cytoplasmic tyrosine kinases, contains Src homology domains (SH2 and SH3), and catalytic kinase domain. SH3 domains are important for the targeting of signaling molecules to specific subcellular locations. We have identified a family with XLA whose affected members have a point mutation (g-->a) at the 5' splice site of intron 8, resulting in the skipping of coding exon 8 and loss of 21 amino acids forming the COOH-terminal portion of the BTK SH3 domain. The study of three generations within this kinship, using restriction fragment length polymorphism and DNA analysis, allowed identification of the mutant X chromosome responsible for XLA and the carrier status in this family. BTK mRNA was present in normal amounts in Epstein-Barr virus-induced B lymphoblastoid cell lines established from affected family members. Although the SH3 deletion did not alter BTK protein stability and kinase activity of the truncated BTK protein was normal, the affected patients nevertheless have a severe B cell defect characteristic for XLA. The mutant protein was modeled using the normal BTK SH3 domain. The deletion results in loss of two COOH-terminal beta strands containing several residues critical for the formation of the putative SH3 ligand-binding pocket. We predict that, as a result, one or more crucial SH3 binding proteins fail to interact with BTK, interrupting the cytoplasmic signal transduction process required for B cell differentiation

    Generalised multistage modelling and tuning algorithm for class EF and class Φ inverters to eliminate iterative retuning

    Get PDF
    The additional complexity of Class EF and Class Φ inverters compared to their Class E counterparts, combined with parasitic effects becoming more prevalent as frequency and power levels increase, results in poor accuracy from traditional design methods, and usually additional iterations of manual retuning are required. In this work we propose an approach to simulating and tuning Class EF/Φ inverters, with various levels of accuracy depending on the level of knowledge of the system parasitics. Our method is comprised of a combination of analytic and numerical solving methods thus providing both insight on the progression of the algorithm and computational robustness. The aim of our algorithm formulation is to enable solutions to be found in an automated and fast way. The novelty in our work lies in the design method's concurrent capability to provide a generalised set of design inputs (e.g. DC to AC current gain, arbitrary drain voltage slope at turn on, Φ- branch resonance, etc.), inclusion of board and device non-linear parasitics, and the ability to design within the set of preferred component values. An example is shown for the design of a 50 W, 13.56 MHz inverter where the experimental setup approaches the theoretical efficiency of 97%. The algorithm changes the values of the components over 5% to 50% and improves the simulated waveform accuracy by 2 to 12 times compared to the design method based on first order approximations

    The challenge of acute-stroke management: does telemedicine offer a solution?

    Get PDF
    <p><b>Background:</b> Several studies have described successful experiences with the use of telemedicine in acute stroke. The objective of this study was to assess the feasibility, acceptability, and treatment delivery reliability, of telemedicine systems for the clinical and radiological assessment, and management of acute-stroke patients.</p> <p><b>Summary of Review:</b> A systematic review of the literature was carried out. Studies were included if they met the following criteria: (1) study population included participants with a diagnosis of suspected acute stroke, (2) intervention included the use of telemedicine systems to aid assessment, diagnosis, or treatment in acute stroke, and (3) outcomes measured related to feasibility in clinical practice, acceptability to patients, carers, and staff, reliability of telemedicine systems, and effectiveness in delivering treatment, especially tissue plasminogen activator (tPA). Overall, 17 relevant non-randomised studies reported that telemedicine systems were feasible and acceptable. Interrater reliability was excellent for global clinical assessments and decisions on radiological exclusion criteria although agreement for individual assessment items was more variable. Telemedicine systems were associated with increased use of tPA.</p> <p><b>Conclusion:</b> Although there is limited reliable evidence, observational studies have indicated that telemedicine systems can be feasible, acceptable, and reliable in acute-stroke management. In addition, telemedicine consultations were associated with improved delivery of tPA.</p&gt

    Outbreak of pandemic influenza A/H1N1 2009 in Nepal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The 2009 flu pandemic is a global outbreak of a new strain of H1N1 influenza virus. Pandemic influenza A (H1N1) 2009 has posed a serious public health challenge world-wide. Nepal has started Laboratory diagnosis of Pandemic influenza A/H1N1 from mid June 2009 though active screening of febrile travellers with respiratory symptoms was started from April 27, 2009.</p> <p>Results</p> <p>Out of 609 collected samples, 302 (49.6%) were Universal Influenza A positive. Among the influenza A positive samples, 172(28.3%) were positive for Pandemic influenza A/H1N1 and 130 (21.3%) were Seasonal influenza A. Most of the pandemic cases (53%) were found among young people with ≤ 20 years. Case Fatality Ratio for Pandemic influenza A/H1N1 in Nepal was 1.74%. Upon Molecular characterization, all the isolated pandemic influenza A/H1N1 2009 virus found in Nepal were antigenically and genetically related to the novel influenza A/CALIFORNIA/07/2009-LIKE (H1N1)v type.</p> <p>Conclusion</p> <p>The Pandemic 2009 influenza virus found in Nepal were antigenically and genetically related to the novel A/CALIFORNIA/07/2009-LIKE (H1N1)v type.</p

    Comparative effectiveness of dipeptidyl peptidase-4 (DPP-4) inhibitors and human glucagon-like peptide-1 (GLP-1) analogue as add-on therapies to sulphonylurea among diabetes patients in the Asia-Pacific region: a systematic review

    Get PDF
    The prevalence of diabetes mellitus is rising globally, and it induces a substantial public health burden to the healthcare systems. Its optimal control is one of the most significant challenges faced by physicians and policy-makers. Whereas some of the established oral hypoglycaemic drug classes like biguanide, sulphonylureas, thiazolidinediones have been extensively used, the newer agents like dipeptidyl peptidase-4 (DPP-4) inhibitors and the human glucagon-like peptide-1 (GLP-1) analogues have recently emerged as suitable options due to their similar efficacy and favorable side effect profiles. These agents are widely recognized alternatives to the traditional oral hypoglycaemic agents or insulin, especially in conditions where they are contraindicated or unacceptable to patients. Many studies which evaluated their clinical effects, either alone or as add-on agents, were conducted in Western countries. There exist few reviews on their effectiveness in the Asia-Pacific region. The purpose of this systematic review is to address the comparative effectiveness of these new classes of medications as add-on therapies to sulphonylurea drugs among diabetic patients in the Asia-Pacific countries. We conducted a thorough literature search of the MEDLINE and EMBASE from the inception of these databases to August 2013, supplemented by an additional manual search using reference lists from research studies, meta-analyses and review articles as retrieved by the electronic databases. A total of nine randomized controlled trials were identified and described in this article. It was found that DPP-4 inhibitors and GLP-1 analogues were in general effective as add-on therapies to existing sulphonylurea therapies, achieving HbA1c reductions by a magnitude of 0.59–0.90% and 0.77–1.62%, respectively. Few adverse events including hypoglycaemic attacks were reported. Therefore, these two new drug classes represent novel therapies with great potential to be major therapeutic options. Future larger-scale research should be conducted among other Asia-Pacific region to evaluate their efficacy in other ethnic groups
    corecore