434 research outputs found
A novel methodology for systematic study on molecular release from microscale reservoirs
We have developed a novel method to systematically investigate molecular release. A series of processes including buckling of thin polymer films, deposition of solute molecules, and transfer to other substrates enabled the fabrication of uniform and submicron-sized tunnel-like molecular reservoirs. From the release profiles, diffusivity and solubility of the solute molecules in the polymeric barriers were calculated. As a model study, we investigated the release of rhodamine B and FITC-labeled dextran polymer representing small molecules and large molecules. The degree of hydration of the polymer barrier was controlled by changing the chain end group of polystyrene (PS) by tert-butyl (PS-t-Bu) and nitrilotriacetic acid (PS-NTA). The NTA-terminated PS thin films showed 13% water uptake regardless of the film thickness while the bare PS and PS-t-Bu barriers exhibited 4% and 6% uptake. This difference in hydration affected release behavior of the molecules. The release of small molecules was dependent on the barrier polymers, while the release of large molecules was completely blocked due to the restricted chain movement of the barrier polymers. Surface treatment by CF4 plasma on the PS-NTA barriers considerably retarded the release of small molecules and blocked the release of large molecules. The release behavior could be well explained by the diffusivity and solubility calculated from the release profile.open1133sciescopu
Zigzag-shaped nickel nanowires via organometallic template-free route
In this manuscript, the formation of nickel nanowires (average size: several tens to hundreds of μm long
and 1.0-1.5 μm wide) at low temperature is found to be driven by dewetting of liquid organometallic
precursors during spin coating process and by self-assembly of Ni clusters. Elaboration of metallic thin
films by low temperature deposition technique makes the preparation process compatible with most of the
substrates. The use of iron and cobalt precursor shows that the process could be extended to other metallic
systems. In this work, AFM and SEM are used to follow the assembly of Ni clusters into straight or
zigzag lines. The formation of zigzag structure is specific to the Ni precursor at appropriate preparation
parameters. This template free process allows a control of anisotropic structures with homogeneous sizes
and angles on standard Si/SiO2 surface
30 inch Roll-Based Production of High-Quality Graphene Films for Flexible Transparent Electrodes
We report that 30-inch scale multiple roll-to-roll transfer and wet chemical
doping considerably enhance the electrical properties of the graphene films
grown on roll-type Cu substrates by chemical vapor deposition. The resulting
graphene films shows a sheet resistance as low as ~30 Ohm/sq at ~90 %
transparency which is superior to commercial transparent electrodes such as
indium tin oxides (ITO). The monolayer of graphene shows sheet resistances as
low as ~125 Ohm/sq with 97.4% optical transmittance and half-integer quantum
Hall effect, indicating the high-quality of these graphene films. As a
practical application, we also fabricated a touch screen panel device based on
the graphene transparent electrodes, showing extraordinary mechanical and
electrical performances
Prognostic significance of a systemic inflammatory response in patients receiving first-line palliative chemotherapy for recurred or metastatic gastric cancer
<p>Abstract</p> <p>Background</p> <p>There is increasing evidence that the presence of an ongoing systemic inflammatory response is associated with poor prognosis in patients with advanced cancers. We evaluated the relationships between clinical status, laboratory factors and progression free survival (PFS), and overall survival (OS) in patients with recurrent or metastatic gastric cancer receiving first-line palliative chemotherapy.</p> <p>Methods</p> <p>We reviewed 402 patients with advanced gastric adenocarcinoma who received first-line palliative chemotherapy from June 2004 and December 2009. Various chemotherapy regimens were used. Eastern Cooperative Oncology Group performance status (ECOG PS), C-reactive protein (CRP), albumin, Glasgow prognostic score (GPS), and clinical factors were recorded immediately prior to first-line chemotherapy. Patients with both an elevated CRP (>1.0 mg/dL) and hypoalbuminemia (<3.5 mg/dL) were assigned a GPS of 2. Patients in whom only one of these biochemical abnormalities was present were assigned a GPS of 1, and patients with a normal CRP and albumin were assigned a score of 0. To evaluate the factors that affected PFS and OS, univariate and multivariate analyses were performed.</p> <p>Results</p> <p>According to multivariate analysis, the factors independently associated with PFS were ECOG PS (HR 1.37, 95% CI 1.02-1.84, <it>P </it>= 0.035), bone metastasis (HR 1.74, 95% CI 1.14-2.65, <it>P </it>= 0.009), and CRP elevation (HR 1.64, 95% CI 1.28-2.09, <it>P </it>= 0.001). The factors independently associated with OS were ECOG PS (HR 1.33, 95% CI 1.01-1.76, <it>P </it>= 0.037), bone metastasis (HR 1.61, 95% CI 1.08-2.39, <it>P </it>= 0.017), and GPS ≥ 1 (HR 1.76, 95% CI 1.41-2.19, <it>P </it>= 0.001).</p> <p>Conclusions</p> <p>The results of this study showed that the presence of a systemic inflammatory response as evidenced by the CRP, GPS was significantly associated with shorter PFS and OS in patients with recurrent or metastatic gastric cancer receiving first-line palliative chemotherapy. Bone metastasis and GPS were very useful indicator for survival in patients with recurrent or metastatic gastric cancer receiving palliative chemotherapy.</p
Using a Powered Bone Marrow Biopsy System Results in Shorter Procedures, Causes Less Residual Pain to Adult Patients, and Yields Larger Specimens
<p>Abstract</p> <p>Background</p> <p>In recent years, a battery-powered bone marrow biopsy system was developed and cleared by the U.S. Food and Drug Administration to allow health care providers to access the bone marrow space quickly and efficiently. A multicenter randomized clinical trial was designed for adult patients to determine if the powered device had advantages over traditional manually-inserted needles in regard to length of procedure, patient pain, complications, user satisfaction, and pathological analysis of the specimens.</p> <p>Methods</p> <p>Adult patients requiring marrow sampling procedures were randomized for a Manual or Powered device. Visual Analog Scale (VAS) pain scores were captured immediately following the procedure and 1 and 7 days later. Procedure time was measured and core specimens were submitted to pathology for grading.</p> <p>Results</p> <p>Ten sites enrolled 102 patients into the study (Powered, n = 52; Manual, n = 50). Mean VAS scores for overall procedural pain were not significantly different between the arms (3.8 ± 2.8 for Powered, 3.5 ± 2.3 for Manual [p = 0.623]). A day later, more patients who underwent the Powered procedure were pain-free (67%) than those patients in the Manual group (33%; p = 0.003). One week later, there was no difference (83% for Powered patients; 76% for Manual patients.) Mean procedure time was 102.1 ± 86.4 seconds for the Powered group and 203.1 ± 149.5 seconds for the Manual group (p < 0.001). Pathology assessment was similar in specimen quality, but there was a significant difference in the specimen volume between the devices (Powered: 36.8 ± 21.2 mm<sup>3</sup>; Manual: 20.4 ± 9.0 mm<sup>3</sup>; p = 0.039). Two non-serious complications were experienced during Powered procedures (4%); but none during Manual procedures (p = 0.495).</p> <p>Conclusions</p> <p>The results of this first trial provide evidence that the Powered device delivers larger-volume bone marrow specimens for pathology evaluation. In addition, bone marrow specimens were secured more rapidly and subjects experienced less intermediate term pain when the Powered device was employed. Further study is needed to determine if clinicians more experienced with the Powered device will be able to use it in a manner that significantly reduces needle insertion pain; and to compare a larger sample of pathology specimens obtained using the Powered device to those obtained using traditional manual biopsy needles.</p
Targeting of mutant hogg1 in mammalian mitochondria and nucleus: effect on cellular survival upon oxidative stress
BACKGROUND: Oxidative damage to mitochondrial DNA has been implicated as a causative factor in a wide variety of degenerative diseases, aging and cancer. The modified guanine, 7,8-dihydro-8-oxoguanine (also known as 8-hydroxyguanine) is one of the major oxidized bases generated in DNA by reactive oxygen species and has gained most of the attention in recent years as a marker of oxidative DNA injury and its suspected role in the initiation of carcinogenesis. 8-hydroxyguanine is removed by hOgg1, a DNA glycosylase/AP lyase involved in the base excision repair pathway. METHODS: We over-expressed wild type and R229Q mutant hOGG1 in the nucleus and mitochondria of cells lacking mitochondrial hOGG1 expression through an expression vector containing nuclear and mitochondrial targeting sequence respectively. We used quantitative real time PCR to analyze mtDNA integrity after exposure to oxidative damaging agents, in cells transfected with or without mitochondrially-targeted mutant hogg1. RESULT: Over-expression of wild type hOgg1 in both nucleus and mitochondria resulted in increased cellular survival when compared to vector or mutant over-expression of hOGG1. Interestingly, mitochondrially-targeted mutant hogg1 resulted in more cell death than nuclear targeted mutant hogg1 upon exposure of cells to oxidative damage. Additional we examined mitochondrial DNA integrity after oxidative damage exposure using real-time quantitative PCR. The presence of mutant hogg1 in the mitochondria resulted in reduced mitochondrial DNA integrity when compared to the wild type. Our work indicates that the R229Q hOGG1 mutation failed to protect cells from oxidative damage and that such mutations in cancer may be more detrimental to cellular survival when present in the mitochondria than in the nucleus. CONCLUSION: These findings suggest that deficiencies in hOGG1, especially in the mitochondria may lead to reduced mitochondrial DNA integrity, consequently resulting in decreased cell viability
Liposarcoma: exploration of clinical prognostic factors for risk based stratification of therapy
<p>Abstract</p> <p>Background</p> <p>Prognosis and optimal treatment strategies of liposarcoma have not been fully defined. The purpose of this study is to define the distinctive clinical features of liposarcomas by assessing prognostic factors.</p> <p>Methods</p> <p>Between January 1995 and May 2008, 94 liposarcoma patients who underwent surgical resection with curative intent were reviewed.</p> <p>Results</p> <p>Fifty patients (53.2%) presented with well differentiated, 22 (23.4%) myxoid, 15 (16.0%) dedifferentiated, 5 (5.3%) round cell, and 2 (2.1%) pleomorphic histology. With the median 14 cm sized of tumor burden, about half of the cases were located in the retroperitoneum (46.8%). Seventy two (76.6%) patients remained alive with 78.1%, and 67.5% of the 5- and 10-year overall survival (OS) rates, respectively. Low grade liposarcoma (well differentiated and myxoid) had a significantly prolonged OS and disease free survival (DFS) with adjuvant radiotherapy when compared with those without adjuvant radiotherapy (5-year OS, 100% vs 66.3%, P = 0.03; 1-year DFS, 92.9% <it>vs </it>50.0%, respectively, P = 0.04). Independent prognostic factors for OS were histologic variant (P = 0.001; HR, 5.1; 95% CI, 2.0 – 12.9), and margin status (P = 0.005; HR, 4.1; 95% CI, 1.6–10.5). We identified three different risk groups: group 1 (n = 66), no adverse factors; group 2, one or two adverse factors (n = 28). The 5-year OS rate for group 1, and 2 were 91.9%, 45.5%, respectively.</p> <p>Conclusion</p> <p>The histologic subtype, and margin status were independently associated with OS, and adjuvant radiotherapy seems to confer survival benefit in low grade tumors. Our prognostic model for primary liposarcoma demonstrated distinct three groups of patients with good prognostic discrimination.</p
Mitochondrial DNA Haplogroup Analysis Reveals no Association between the Common Genetic Lineages and Prostate Cancer in the Korean Population
Mitochondrial DNA (mtDNA) variation has recently been suggested to have an association with various cancers, including prostate cancer risk, in human populations. Since mtDNA is haploid and lacks recombination, specific mutations in the mtDNA genome associated with human diseases arise and remain in particular genetic backgrounds referred to as haplogroups. To assess the possible contribution of mtDNA haplogroup-specific mutations to the occurrence of prostate cancer, we have therefore performed a population-based study of a prostate cancer cases and corresponding controls from the Korean population. No statistically significant difference in the distribution of mtDNA haplogroup frequencies was observed between the case and control groups of Koreans. Thus, our data imply that specific mtDNA mutations/lineages did not appear to have a significant effect on a predisposition to prostate cancer in the Korean population, although larger sample sizes are necessary to validate our results
- …