35,168 research outputs found

    Renormalization and Hyperscaling for Self-Avoiding Manifold Models

    Full text link
    The renormalizability of the self-avoiding manifold (SAM) Edwards model is established. We use a new short distance multilocal operator product expansion (MOPE), which extends methods of local field theories to a large class of models with non-local singular interactions. This validates the direct renormalization method introduced before, as well as scaling laws. A new general hyperscaling relation for the configuration exponent gamma is derived. Manifolds at the Theta-point, and long range Coulomb interactions are briefly discussed.Comment: 10 pages + 1 figure, TeX + harvmac & epsf (uuencoded file), SPhT/93-07

    Failures in power-combining arrays

    Get PDF
    We derive a simple formula for the change in output when a device fails in a power-combining structure with identical matched devices. The loss is written in terms of the scattering coefficient of the failed device and reflection coefficient of an input port in the combining network. We apply this formula to several power combiners, including arrays in free space and enclosed waveguide structures. Our simulations indicate the output power degrades gracefully as devices fail, which is in agreement with previously published results

    Statistical Entropy of Nonextremal Four-Dimensional Black Holes and U-Duality

    Get PDF
    We identify the states in string theory which are responsible for the entropy of near-extremal rotating four-dimensional black holes in N=8N=8 supergravity. For black holes far from extremality (with no rotation), the Bekenstein-Hawking entropy is exactly matched by a mysterious duality invariant extension of the formulas derived for near-extremal black holes states.Comment: 9 pages, harvma

    Edge local complementation for logical cluster states

    Full text link
    A method is presented for the implementation of edge local complementation in graph states, based on the application of two Hadamard operations and a single controlled-phase (CZ) gate. As an application, we demonstrate an efficient scheme to construct a one-dimensional logical cluster state based on the five-qubit quantum error-correcting code, using a sequence of edge local complementations. A single physical CZ operation, together with local operations, is sufficient to create a logical CZ operation between two logical qubits. The same construction can be used to generate any encoded graph state. This approach in concatenation may allow one to create a hierarchical quantum network for quantum information tasks.Comment: 15 pages, two figures, IOP styl

    Bogomol'nyi Limit For Magnetic Vortices In Rotating Superconductor

    Full text link
    This work is the sequel of a previous investigation of stationary and cylindrically symmetric vortex configurations for simple models representing an incompressible non-relativistic superconductor in a rigidly rotating background. In the present paper, we carry out our analysis with a generalized Ginzburg-Landau description of the superconductor, which provides a prescription for the radial profile of the normal density within the vortex. Within this framework, it is shown that the Bogomol'nyi limit condition marking the boundary between type I and type II behavior is unaffected by the rotation of the background.Comment: 7 pages, uses RevTeX, submitted to Phys.Rev.

    Single-Particle Density of States of a Superconductor with a Spatially Varying Gap and Phase Fluctuations

    Get PDF
    Recent experiments have shown that the superconducting energy gap in some cuprates is spatially inhomogeneous. Motivated by these experiments, and using exact diagonalization of a model d-wave Hamiltonian, combined with Monte Carlo simulations of a Ginzburg-Landau free energy functional, we have calculated the single-particle density of states LDOS(ω,r)(\omega,r) of a model high-Tc_c superconductor as a function of temperature. Our calculations include both quenched disorder in the pairing potential and thermal fluctuations in both phase and amplitude of the superconducting gap. Most of our calculations assume two types of superconducting regions: α\alpha, with a small gap and large superfluid density, and β\beta, with the opposite. If the β\beta regions are randomly embedded in an α\alpha host, the LDOS on the α\alpha sites still has a sharp coherence peak at T=0T = 0, but the β\beta component does not, in agreement with experiment. An ordered arrangement of β\beta regions leads to oscillations in the LDOS as a function of energy. The model leads to a superconducting transition temperature TcT_c well below the pseudogap temperature Tc0T_{c0}, and has a spatially varying gap at very low TT, both consistent with experiments in underdoped Bi2212. Our calculated LDOS(ω,r)(\omega,r) shows coherence peaks for TTcT T_c, in agreement with previous work considering phase but not amplitude fluctuations in a homogeneous superconductor. Well above TcT_c, the gap in the LDOS disappears.Comment: 37 pages, 12 figures. Accepted by Phys. Rev. B. Scheduled Issue: 01 Nov 200

    The Number of Different Binary Functions Generated by NK-Kauffman Networks and the Emergence of Genetic Robustness

    Full text link
    We determine the average number ϑ(N,K) \vartheta (N, K) , of \textit{NK}-Kauffman networks that give rise to the same binary function. We show that, for N1 N \gg 1 , there exists a connectivity critical value Kc K_c such that ϑ(N,K)eϕN \vartheta(N,K) \approx e^{\phi N} (ϕ>0 \phi > 0 ) for K<Kc K < K_c and ϑ(N,K)1\vartheta(N,K) \approx 1 for K>Kc K > K_c . We find that Kc K_c is not a constant, but scales very slowly with N N , as Kclog2log2(2N/ln2) K_c \approx \log_2 \log_2 (2N / \ln 2) . The problem of genetic robustness emerges as a statistical property of the ensemble of \textit{NK}-Kauffman networks and impose tight constraints in the average number of epistatic interactions that the genotype-phenotype map can have.Comment: 4 figures 18 page

    Renormalization of Crumpled Manifolds

    Get PDF
    We consider a model of D-dimensional tethered manifold interacting by excluded volume in R^d with a single point. By use of intrinsic distance geometry, we first provide a rigorous definition of the analytic continuation of its perturbative expansion for arbitrary D, 0 < D < 2. We then construct explicitly a renormalization operation, ensuring renormalizability to all orders. This is the first example of mathematical construction and renormalization for an interacting extended object with continuous internal dimension, encompassing field theory.Comment: 10 pages (1 figure, included), harvmac, SPhT/92-15
    corecore