261 research outputs found
Glial cell line-derived neurotrophic factor (GDNF) therapy for Parkinson's disease.
Many studies using animals clarify that glial cell line-derived neurotrophic factor (GDNF) has strong neuroprotective and neurorestorative effects on dopaminergic neurons. Several pilot studies clarified the validity of continuous intraputaminal GDNF infusion to patients with Parkinson's disease (PD), although a randomized controlled trial of GDNF therapy published in 2006 resulted in negative outcomes, and controversy remains about the efficacy and safety of the treatment. For a decade, our laboratory has investigated the efficacy and the most appropriate method of GDNF administration using animals, and consequently we have obtained some solid data that correspond to the results of clinical trials. In this review, we present an outline of our studies and other key studies related to GDNF, the current state of the research, problems to be overcome, and predictions regarding the use of GDNF therapy for PD in the future.</p
Current Insights into Mesenchymal Signatures in Glioblastoma
Glioblastoma (GBM) is a fatal primary malignant brain tumor in adults. Despite decades of research, the prognosis for GBM patients is still disappointing. One major reason for the intense therapeutic resistance of GBM is inter- and intra-tumor heterogeneity. GBM-intrinsic transcriptional profiling has suggested the presence of at least three subtypes of GBM: the proneural, classic, and mesenchymal subtypes. The mesenchymal subtype is the most aggressive, and patients with the mesenchymal subtype of primary and recurrent tumors tend to have a worse prognosis compared with patients with the other subtypes. Furthermore, GBM can shift from other subtypes to the mesenchymal subtype over the course of disease progression or recurrence. This phenotypic transition is driven by diverse tumor-intrinsic molecular mechanisms or microenvironmental factors. Thus, better understanding of the plastic nature of mesenchymal transition in GBM is pivotal to developing new therapeutic strategies. In this review, we provide a comprehensive overview of the current understanding of the elements involved in the mesenchymal transition of GBM and discuss future perspectives
Animal Models for Parkinson's Disease Research: Trends in the 2000s
Parkinson's disease (PD) is a chronic and progressive movement disorder and the second most common neurodegenerative disease. Although many studies have been conducted, there is an unmet clinical need to develop new treatments because, currently, only symptomatic therapies are available. To achieve this goal, clarification of the pathology is required. Attempts have been made to emulate human PD and various animal models have been developed over the decades. Neurotoxin models have been commonly used for PD research. Recently, advances in transgenic technology have enabled the development of genetic models that help to identify new approaches in PD research. However, PD animal model trends have not been investigated. Revealing the trends for PD research will be valuable for increasing our understanding of the positive and negative aspects of each model. In this article, we clarified the trends for animal models that were used to research PD in the 2000s, and we discussed each model based on these trends
A Case of High-Grade Glioma in an Eloquent Area Treated with Awake Craniotomy in an 85-year-old Patient
An 85-year-old woman presented with aphasia due to an occupying lesion in the left frontal lobe near the language area. Complete resection of the contrast-enhancing lesion was performed under awake conditions. The pathological diagnosis was anaplastic astrocytoma, and postoperative radiochemotherapy was administered. Awake surgery is a useful technique to reduce postoperative neurological sequelae and to maximize surgical resection. Although the patient was elderly, which is generally considered high risk, she did not have any severe neurological deficits and had a good outcome. Even in the extreme elderly, awake surgery can be useful for gliomas in language cortices
- …