4,318 research outputs found
Vibrational Feshbach Resonances Mediated by Nondipole Positron-Molecule Interactions
Measurements of energy-resolved positron-molecule annihilation show the
existence of positron binding and vibrational Feshbach resonances. The existing
theory describes this phenomenon successfully for the case of infrared-active
vibrational modes which allow dipole coupling between the incident positron and
the vibrational motion. Presented here are measurements of positron-molecule
annihilation made using a recently developed cryogenic positron beam capable of
significantly improved energy resolution. The results provide evidence of
resonances associated with infrared-inactive vibrational modes, indicating that
positron-molecule bound states may be populated by nondipole interactions. The
anticipated ingredients for a theoretical description of such interactions are
discussed.Comment: 5 pages, 2 figures, Phys. Rev. Lett. (in press
Mode coupling and multiquantum vibrational excitations in Feshbach-resonant positron annihilation in molecules
The dominant mechanism of low-energy positron annihilation in polyatomic
molecules is through positron capture in vibrational Feshbach resonances (VFR).
In this paper we investigate theoretically the effect of anharmonic terms in
the vibrational Hamiltonian on the positron annihilation rates. Such
interactions enable positron capture in VFRs associated with multiquantum
vibrational excitations, leading to enhanced annihilation. Mode coupling can
also lead to faster depopulation of VFRs, thereby reducing their contribution
to the annihlation rates. To analyze this complex picture, we use
coupled-cluster methods to calculate the anharmonic vibrational spectra and
dipole transition amplitudes for chloroform, chloroform-,
1,1-dichloroethylene, and methanol, and use these data to compute positron
resonant annihilation rates for these molecules. Theoretical predictions are
compared with the annihilation rates measured as a function of incident
positron energy. The results demonstrate the importance of mode coupling in
both enhancement and suppression of the VFR. There is also experimental
evidence for the direct excitation of multimode VFR. Their contribution is
analyzed using a statistical approach, with an outlook towards more accurate
treatment of this phenomenon.Comment: 16 pages, 10 figures, submitted to Phys. Rev.
The Mars observer camera
A camera designed to operate under the extreme constraints of the Mars Observer Mission was selected by NASA in April, 1986. Contingent upon final confirmation in mid-November, the Mars Observer Camera (MOC) will begin acquiring images of the surface and atmosphere of Mars in September-October 1991. The MOC incorporates both a wide angle system for low resolution global monitoring and intermediate resolution regional targeting, and a narrow angle system for high resolution selective surveys. Camera electronics provide control of image clocking and on-board, internal editing and buffering to match whatever spacecraft data system capabilities are allocated to the experiment. The objectives of the MOC experiment follow
Experimental Crystallization of Yamato 980459
Currently, only two martian meteorites QUE 94201 (QUE) and Yamato 980459 (Y98) have been experimentally shown to me true melt compositions. Most martian meteorites are instead, cumulates or partial cumulates. We have performed experiments on a Y98 composition to assess whether QUE could be related to Y98 by some fractionation process [1]. Y98 is a basaltic shergottite from the SNC (Shergotty, Nakhla, Chassigny) meteorite group. Y98 is composed of 26% olivine, 48% pyroxene, 25% mesostasis, and no plagioclase [2]. The large size of the olivine megacrysts and absence of plagioclase suggest that the parental melt which formed this meteorite had begun cooling slowly until some mechanism, such as magma ascent, caused rapid cooling [3]. Y98 s olivines have the highest Mg content of all the shergottites suggesting that it is the most primitive [4]. Y98 has been determined to be a melt composition by comparing the composition of experimental liquidus olivines with the composition of the cores of Y98 olivines [4]. The liquidus of Y98 is predicted by MELTS [5] and by experimentation [6] to be ~1450 C. Analyses of Y98 show it to be very depleted in LREEs and it has similar depleted patterns as other shergottites such as QUE [7]
Effect of Calcium Source, Dietary Calcium Concentration, and Gestation Phase on Various Bone Characteristics in Gestating Gilts
Sixty gravid crossbred gilts were allotted to a 2 x 3 x 2 factorial arrangement of treatments: two Ca sources (sun-cured alfalfa meal and CaC03), three dietary concentrations of Ca (50, 75, and 100% of NRC requirements), and two phases of gestation (55 and 105 d). The objectives were to determine the effect of Ca source, dietary Ca concentration, and gestation phase on bone characteristics (bone breaking strength, bone ash percentage, bone density, and bone ash density in the rib, thoracic, and coccygeal bones), to correlate bone responses to determine relative bone activity, and to determine reliability of the coccygeal bones as indicators of Ca status in the body. At 55 d, rib strength and coccygeal ash content were lower (P \u3c .01) than at 105 d of gestation. A gestation phase x Ca concentration (P \u3c .05) interaction occurred. As Ca concentration increased, thoracic strength and rib ash responded quadratically during each gestation phase, for which at 55 d a minima and at 105 d a maxima was produced at 75% of NRC. A Ca source x Ca concentration ( P \u3c .05) interaction occurred. Gilts fed alfalfa had the lowest rib bone and ash density when fed 75% of NRC for Ca, whereas gilts fed CaC03 were highest at this level of Ca compared with the other concentrations. Generally, all bones were positively correlated with respect to their response to dietary Ca concentration. Few negative correlations were observed. At this level of physiological maturity, there was no effect of Ca source and little effect of gestation phase on the bone variables measured at the dietary Ca concentrations used in this experiment. The rib and thoracic bones seem to be the most responsive to dietary Ca concentration
Library Design in Combinatorial Chemistry by Monte Carlo Methods
Strategies for searching the space of variables in combinatorial chemistry
experiments are presented, and a random energy model of combinatorial chemistry
experiments is introduced. The search strategies, derived by analogy with the
computer modeling technique of Monte Carlo, effectively search the variable
space even in combinatorial chemistry experiments of modest size. Efficient
implementations of the library design and redesign strategies are feasible with
current experimental capabilities.Comment: 5 pages, 3 figure
Mars Observer Camera
The Mars Observer camera (MOC) is a three-component system (one narrow-angle and two wide-angle cameras) designed to take high spatial resolution pictures of the surface of Mars and to obtain lower spatial resolution, synoptic coverage of the planet's surface and atmosphere. The cameras are based on the “push broom” technique; that is, they do not take “frames” but rather build pictures, one line at a time, as the spacecraft moves around the planet in its orbit. MOC is primarily a telescope for taking extremely high resolution pictures of selected locations on Mars. Using the narrow-angle camera, areas ranging from 2.8 km × 2.8 km to 2.8 km × 25.2 km (depending on available internal digital buffer memory) can be photographed at about 1.4 m/pixel. Additionally, lower-resolution pictures (to a lowest resolution of about 11 m/pixel) can be acquired by pixel averaging; these images can be much longer, ranging up to 2.8 × 500 km at 11 m/pixel. High-resolution data will be used to study sediments and sedimentary processes, polar processes and deposits, volcanism, and other geologic/geomorphic processes. The MOC wide-angle cameras are capable of viewing Mars from horizon to horizon and are designed for low-resolution global and intermediate resolution regional studies. Low-resolution observations can be made every orbit, so that in a single 24-hour period a complete global picture of the planet can be assembled at a resolution of at least 7.5 km/pixel. Regional areas (covering hundreds of kilometers on a side) may be photographed at a resolution of better than 250 m/pixel at the nadir. Such images will be particularly useful in studying time-variable features such as lee clouds, the polar cap edge, and wind streaks, as well as acquiring stereoscopic coverage of areas of geological interest. The limb can be imaged at a vertical and along-track resolution of better than 1.5 km. Different color filters within the two wide-angle cameras permit color images of the surface and atmosphere to be made to distinguish between clouds and the ground and between clouds of different composition
Mars Observer Camera
The Mars Observer camera (MOC) is a three-component system (one narrow-angle and two wide-angle cameras) designed to take high spatial resolution pictures of the surface of Mars and to obtain lower spatial resolution, synoptic coverage of the planet's surface and atmosphere. The cameras are based on the “push broom” technique; that is, they do not take “frames” but rather build pictures, one line at a time, as the spacecraft moves around the planet in its orbit. MOC is primarily a telescope for taking extremely high resolution pictures of selected locations on Mars. Using the narrow-angle camera, areas ranging from 2.8 km × 2.8 km to 2.8 km × 25.2 km (depending on available internal digital buffer memory) can be photographed at about 1.4 m/pixel. Additionally, lower-resolution pictures (to a lowest resolution of about 11 m/pixel) can be acquired by pixel averaging; these images can be much longer, ranging up to 2.8 × 500 km at 11 m/pixel. High-resolution data will be used to study sediments and sedimentary processes, polar processes and deposits, volcanism, and other geologic/geomorphic processes. The MOC wide-angle cameras are capable of viewing Mars from horizon to horizon and are designed for low-resolution global and intermediate resolution regional studies. Low-resolution observations can be made every orbit, so that in a single 24-hour period a complete global picture of the planet can be assembled at a resolution of at least 7.5 km/pixel. Regional areas (covering hundreds of kilometers on a side) may be photographed at a resolution of better than 250 m/pixel at the nadir. Such images will be particularly useful in studying time-variable features such as lee clouds, the polar cap edge, and wind streaks, as well as acquiring stereoscopic coverage of areas of geological interest. The limb can be imaged at a vertical and along-track resolution of better than 1.5 km. Different color filters within the two wide-angle cameras permit color images of the surface and atmosphere to be made to distinguish between clouds and the ground and between clouds of different composition
Supraclavicular Subclavian Access for Sapien Transcatheter Aortic Valve Replacement: A Novel Approach
BACKGROUND:
Within the trans-subclavian approach, procedural techniques can vary widely, and reported access generally refers to an infraclavicular axillary approach. We describe and report the use of a novel supraclavicular true subclavian approach for transcatheter aortic valve replacement (TAVR) exclusively for implantation of Sapien 3 valves. CASE PRESENTATION:
We report our first five consecutive patients undergoing TAVR with a Sapien 3 valve using a standardized subclavian approach at a single center. In-hospital and 30-day complications were reported. The use of this approach resulted in successful implantation in 100% of patients in a safe manner with 0% mortality, stroke, and vascular injury during hospitalization and at 30 day follow-up. The in-hospital pacemaker implantation rate was 20%. The average length of stay was 3 days. CONCLUSIONS:
TAVR with Sapien implant can be safely performed with a standardized supraclavicular subclavian approach in patients with unfavorable femoral access
Redox Systematics of Martian Magmas with Implications for Magnetite Stability
Iron redox systematics of the high FeO shergottitic liquids are poorly known, yet have a fundamental control on stability of phases such as magnetite, ilmenite, and pyroxenes
- …