94 research outputs found
Local Enhancement Promotes Cockroach Feeding Aggregations
Communication and learning from each other are part of the success of animal societies. Social insects invest considerable effort into signalling to their nestmates the locations of the most profitable resources in their environment. Growing evidence also indicates that insects glean such information through cues inadvertently provided by their conspecifics. Here, we investigate social information use in the foraging decisions by gregarious cockroaches (Blattella germanica L.). Individual cockroaches given a simultaneous choice in a Y-olfactometer between the odour of feeding conspecifics and the mixed odour of food plus non-feeding conspecifics showed a preference for the arm scented with the odour of feeding conspecifics. Social information (the presence of feeding conspecifics) was produced by cockroaches of all age classes and perceived at short distance in the olfactometer arms, suggesting the use of inadvertently provided cues rather than signals. We discuss the nature of these cues and the role of local enhancement (the selection of a location based on cues associated with the presence of conspecifics) in the formation of feeding aggregations in B. germanica. Similar cue-mediated recruitments could underpin a wide range of collective behaviours in group-living insects
Evaluation of MAGE-1 and MAGE-3 as tumour-specific markers to detect blood dissemination of hepatocellular carcinoma cells
The members of MAGE gene family are highly expressed in human hepatocellular carcinoma (HCC). In the present study, we tested the tumour-specific MAGE-1 and MAGE-3 transcripts in the peripheral blood of HCC patients by nested RT–PCR to detect the circulating tumour cells and evaluate their potential clinical implication. Of 30 HCC patients, the positive rate of MAGE-1 and MAGE-3 transcripts was 43.3% (13 out of 30) and 33.3% (10 out of 30) in PBMC samples, whilst the positive rate was 70% (21 out of 30) and 53.3% (16 out of 30) in the resected HCC tissue samples, respectively. The positivity for at least one MAGE gene transcript was 63.3% (19 out of 30) in PBMC samples of HCC patients and 83.3% (25 out of 30) in the resected HCC tissue samples. MAGE-1 and/or MAGE-3 mRNA were not detected in the PBMC of those patients from whom the resected HCC tissues were MAGE-1 or MAGE-3 mRNA negative, nor in the 25 PBMC samples from healthy donors. The detection of MAGE transcripts in PBMC was correlated with the advanced stages and tumour size of the HCC, being 82.4% (14 out of 17) in tumour stages III and IVa, 56.6% (five out of nine) in stage II, and null (nought out of four) in stage I. The serum α-FP in 33.3% (10 out of 30) of HCC patients was normal or slightly elevated (<40 ng ml−1). However, six of these 10 patients (α-FP <40 ng ml−1) were MAGE-1 and /or MAGE-3 mRNA positive in their PBMC. The follow-up survey of MAGE mRNA in PBMC was performed in 12 patients. Seven patients with persistent MAGE-1 and/or MAGE-3 mRNA positive or from negative turned to positive died because of metastasis and/or recurrence. In striking contrast, all four patients with MAGE-1 and/or MAGE-3 mRNA from positive turned to negative and one patient with persistent MAGE-3 transcript negative are alive after last test. Collectively, detection of MAGE transcripts with follow-up survey in PBMC is a feasible and reliable assay for the early prediction of the relapse and prognosis of the HCC patients
Topological Structure of the Space of Phenotypes: The Case of RNA Neutral Networks
The evolution and adaptation of molecular populations is constrained by the diversity accessible through mutational processes. RNA is a paradigmatic example of biopolymer where genotype (sequence) and phenotype (approximated by the secondary structure fold) are identified in a single molecule. The extreme redundancy of the genotype-phenotype map leads to large ensembles of RNA sequences that fold into the same secondary structure and can be connected through single-point mutations. These ensembles define neutral networks of phenotypes in sequence space. Here we analyze the topological properties of neutral networks formed by 12-nucleotides RNA sequences, obtained through the exhaustive folding of sequence space. A total of 412 sequences fragments into 645 subnetworks that correspond to 57 different secondary structures. The topological analysis reveals that each subnetwork is far from being random: it has a degree distribution with a well-defined average and a small dispersion, a high clustering coefficient, and an average shortest path between nodes close to its minimum possible value, i.e. the Hamming distance between sequences. RNA neutral networks are assortative due to the correlation in the composition of neighboring sequences, a feature that together with the symmetries inherent to the folding process explains the existence of communities. Several topological relationships can be analytically derived attending to structural restrictions and generic properties of the folding process. The average degree of these phenotypic networks grows logarithmically with their size, such that abundant phenotypes have the additional advantage of being more robust to mutations. This property prevents fragmentation of neutral networks and thus enhances the navigability of sequence space. In summary, RNA neutral networks show unique topological properties, unknown to other networks previously described
Report on the Raphitomidae Bellardi, 1875 (Mollusca: Gastropoda: Conoidea) from the China Seas
Li, Baoquan, Li, Xinzheng (2014): Report on the Raphitomidae Bellardi, 1875 (Mollusca: Gastropoda: Conoidea) from the China Seas. Journal of Natural History 48 (17): 999-1025, DOI: 10.1080/00222933.2013.86193
Measurement of the Zγ production cross section in pp collisions at 8 TeV and search for anomalous triple gauge boson couplings
Open Access, Copyright CERN, for the benefit of the CMS Collaboration. Article funded by SCOAP3.Abstract: The cross section for the production of Zγ in proton-proton collisions at 8 TeV is measured based on data collected by the CMS experiment at the LHC corresponding to an integrated luminosity of 19.5 fb−1. Events with an oppositely-charged pair of muons or electrons together with an isolated photon are selected. The differential cross section as a function of the photon transverse momentum is measured inclusively and exclusively, where the exclusive selection applies a veto on central jets. The observed cross sections are compatible with the expectations of next-to-next-to-leading-order quantum chromodynamics. Limits on anomalous triple gauge couplings of ZZγ and Zγγ are set that improve on previous experimental results obtained with the charged lepton decay modes of the Z boson
- …