535 research outputs found
Multicompartment polymersome gel for encapsulation
We introduce an approach that combines the concepts of emulsion-templating and dewetting for fabricating polymersomes with a large number of compartments. The resultant polymersome gel behaves as a gel-like solid, but is a true vesicle suspended in an aqueous environment. Due to the thin membranes that separate the compartments, the polymersome gels have a high volume fraction of internal phase for encapsulation of hydrophilic actives; they also provide a large surface area of diblock copolymer membrane for encapsulation of lipophilic actives. Multiple actives can also be encapsulated in the gel without cross-contamination. Our technique represents a simple and versatile bulk approach for fabricating polymersome gels; it does not require the use of any specialized equipment or subsequent polymerization steps to solidify the gel. The resultant polymersome gel is promising as an encapsulating structure as well as a scaffold for tissue engineering. © 2011 The Royal Society of Chemistry.postprin
Electrostatic Repulsion of Positively Charged Vesicles and Negatively Charged Objects
A positively charged, mixed bilayer vesicle in the presence of negatively
charged surfaces (for example, colloidal particles) can spontaneously partition
into an adhesion zone of definite area, and another zone that repels additional
negative objects. Although the membrane itself has nonnegative charge in the
repulsive zone, negative counterions on the interior of the vesicle
spontaneously aggregate there, and present a net negative charge to the
exterior. Beyond the fundamental result that oppositely charged objects can
repel, our mechanism helps explain recent experiments on surfactant vesicles.Comment: Latex using epsfig and afterpage; pdf available at
http://www.physics.upenn.edu/~nelson/Mss/repel.pd
Breakup of double emulsions in constrictions
We report the controlled breakup of double emulsion droplets as they flow through an orifice of a tapered nozzle. The results are summarized in a phase diagram in terms of the droplet-to-orifice diameter ratio and the capillary number. We identify a flow regime where the inner aqueous phase is released. © 2011 The Royal Society of Chemistry.postprin
Experiments in randomly agitated granular assemblies close to the jamming transition
We present here the preliminary results obtained for two experiments on
randomly agitated granular assemblies using a novel way of shaking. First we
discuss the transport properties of a 2D model system undergoing classical
shaking that show the importance of large scale dynamics for this type of
agitation and offer a local view of the microscopic motions of a grain. We then
develop a new way of vibrating the system allowing for random accelerations
smaller than gravity. Using this method we study the evolution of the free
surface as well as results from a light scattering method for a 3D model
system. The final aim of these experiments is to investigate the ideas of
effective temperature on the one hand as a function of inherent states and on
the other hand using fluctuation dissipation relations.Comment: Contribution to the volume "Unifying Concepts in Granular Media and
Glasses", edt.s A. Coniglio, A. Fierro, H.J. Herrmann and M. Nicodem
Structure formation in active networks
Structure formation and constant reorganization of the actin cytoskeleton are
key requirements for the function of living cells. Here we show that a minimal
reconstituted system consisting of actin filaments, crosslinking molecules and
molecular-motor filaments exhibits a generic mechanism of structure formation,
characterized by a broad distribution of cluster sizes. We demonstrate that the
growth of the structures depends on the intricate balance between
crosslinker-induced stabilization and simultaneous destabilization by molecular
motors, a mechanism analogous to nucleation and growth in passive systems. We
also show that the intricate interplay between force generation, coarsening and
connectivity is responsible for the highly dynamic process of structure
formation in this heterogeneous active gel, and that these competing mechanisms
result in anomalous transport, reminiscent of intracellular dynamics
Unexpected drop of dynamical heterogeneities in colloidal suspensions approaching the jamming transition
As the glass (in molecular fluids\cite{Donth}) or the jamming (in colloids
and grains\cite{LiuNature1998}) transitions are approached, the dynamics slow
down dramatically with no marked structural changes. Dynamical heterogeneity
(DH) plays a crucial role: structural relaxation occurs through correlated
rearrangements of particle ``blobs'' of size
\cite{WeeksScience2000,DauchotPRL2005,Glotzer,Ediger}. On approaching
these transitions, grows in glass-formers\cite{Glotzer,Ediger},
colloids\cite{WeeksScience2000,BerthierScience2005}, and driven granular
materials\cite{KeysNaturePhys2007} alike, strengthening the analogies between
the glass and the jamming transitions. However, little is known yet on the
behavior of DH very close to dynamical arrest. Here, we measure in colloids the
maximum of a ``dynamical susceptibility'', , whose growth is usually
associated to that of \cite{LacevicPRE}. initially increases with
volume fraction , as in\cite{KeysNaturePhys2007}, but strikingly drops
dramatically very close to jamming. We show that this unexpected behavior
results from the competition between the growth of and the reduced
particle displacements associated with rearrangements in very dense
suspensions, unveiling a richer-than-expected scenario.Comment: 1st version originally submitted to Nature Physics. See the Nature
Physics website fro the final, published versio
Potentiation of thrombus instability: a contributory mechanism to the effectiveness of antithrombotic medications
© The Author(s) 2018The stability of an arterial thrombus, determined by its structure and ability to resist endogenous fibrinolysis, is a major determinant of the extent of infarction that results from coronary or cerebrovascular thrombosis. There is ample evidence from both laboratory and clinical studies to suggest that in addition to inhibiting platelet aggregation, antithrombotic medications have shear-dependent effects, potentiating thrombus fragility and/or enhancing endogenous fibrinolysis. Such shear-dependent effects, potentiating the fragility of the growing thrombus and/or enhancing endogenous thrombolytic activity, likely contribute to the clinical effectiveness of such medications. It is not clear how much these effects relate to the measured inhibition of platelet aggregation in response to specific agonists. These effects are observable only with techniques that subject the growing thrombus to arterial flow and shear conditions. The effects of antithrombotic medications on thrombus stability and ways of assessing this are reviewed herein, and it is proposed that thrombus stability could become a new target for pharmacological intervention.Peer reviewedFinal Published versio
Towards dual antithrombotic compounds – Balancing thrombin inhibitory and fibrinogen GPIIb/IIIa binding inhibitory activities of 2,3-dihydro-1,4-benzodioxine derivatives through regio- and stereoisomerism
The liquid-glass-jamming transition in disordered ionic nanoemulsions
In quenched disordered out-of-equilibrium many-body colloidal systems, there are important distinctions between the glass transition, which is related to the onset of nonergodicity and loss of low-frequency relaxations caused by crowding, and the jamming transition, which is related to the dramatic increase in elasticity of the system caused by the deformation of constituent objects. For softer repulsive interaction potentials, these two transitions become increasingly smeared together, so measuring a clear distinction between where the glass ends and where jamming begins becomes very difficult or even impossible. Here, we investigate droplet dynamics in concentrated silicone oil-in-water nanoemulsions using light scattering. For zero or low NaCl electrolyte concentrations, interfacial repulsions are soft and longer in range, this transition sets in at lower concentrations, and the glass and the jamming regimes are smeared. However, at higher electrolyte concentrations the interactions are stiffer, and the characteristics of the glass-jamming transition resemble more closely the situation of disordered elastic spheres having sharp interfaces, so the glass and jamming regimes can be distinguished more clearly
- …
