519 research outputs found

    Many-body localization phase transition

    Get PDF
    We use exact diagonalization to explore the many-body localization transition in a random-field spin-1/2 chain. We examine the correlations within each many-body eigenstate, looking at all high-energy states and thus effectively working at infinite temperature. For weak random field the eigenstates are thermal, as expected in this nonlocalized, “ergodic” phase. For strong random field the eigenstates are localized with only shortrange entanglement. We roughly locate the localization transition and examine some of its finite-size scaling, finding that this quantum phase transition at nonzero temperature might be showing infinite-randomness scaling with a dynamic critical exponent zâ†’ïżœ

    Energy transport in disordered classical spin chains

    Get PDF
    We present a numerical study of the diffusion of energy at high temperature in strongly disordered chains of interacting classical spins evolving deterministically. We find that quenched randomness strongly suppresses transport with the diffusion constant becoming reduced by several orders of magnitude upon the introduction of moderate disorder. We have also looked for but not found signs of a classical many-body localization transition at any nonzero strength of the spin-spin interactions

    Localization-protected quantum order

    Get PDF
    Closed quantum systems with quenched randomness exhibit many-body localized regimes wherein they do not equilibrate, even though prepared with macroscopic amounts of energy above their ground states. We show that such localized systems can order, in that individual many-body eigenstates can break symmetries or display topological order in the infinite-volume limit. Indeed, isolated localized quantum systems can order even at energy densities where the corresponding thermally equilibrated system is disordered, i.e., localization protects order. In addition, localized systems can move between ordered and disordered localized phases via nonthermodynamic transitions in the properties of the many-body eigenstates. We give evidence that such transitions may proceed via localized critical points. We note that localization provides protection against decoherence that may allow experimental manipulation of macroscopic quantum states. We also identify a “spectral transition” involving a sharp change in the spectral statistics of the many-body Hamiltonian

    An alternative order parameter for the 4-state Potts model

    Get PDF
    We have investigated the dynamic critical behavior of the two-dimensional 4-state Potts model using an alternative order parameter first used by Vanderzande [J. Phys. A: Math. Gen. \textbf{20}, L549 (1987)] in the study of the Z(5) model. We have estimated the global persistence exponent Ξg\theta_g by following the time evolution of the probability P(t)P(t) that the considered order parameter does not change its sign up to time tt. We have also obtained the critical exponents Ξ\theta, zz, Îœ\nu, and ÎČ\beta using this alternative definition of the order parameter and our results are in complete agreement with available values found in literature.Comment: 6 pages, 6 figure

    A comparative study of the dynamic critical behavior of the four-state Potts like models

    Full text link
    We investigate the short-time critical dynamics of the Baxter-Wu (BW) and n=3n=3 Turban (3TU) models to estimate their global persistence exponent Ξg\theta _{g}. We conclude that this new dynamical exponent can be useful in detecting differences between the critical behavior of these models which are very difficult to obtain in usual simulations. In addition, we estimate again the dynamical exponents of the four-state Potts (FSP) model in order to compare them with results previously obtained for the BW and 3TU models and to decide between two sets of estimates presented in the current literature. We also revisit the short-time dynamics of the 3TU model in order to check if, as already found for the FSP model, the anomalous dimension of the initial magnetization x0x_{0} could be equal to zero

    Global persistence exponent of the two-dimensional Blume-Capel model

    Full text link
    The global persistence exponent Ξg\theta_g is calculated for the two-dimensional Blume-Capel model following a quench to the critical point from both disordered states and such with small initial magnetizations. Estimates are obtained for the nonequilibrium critical dynamics on the critical line and at the tricritical point. Ising-like universality is observed along the critical line and a different value Ξg=1.080(4)\theta_g =1.080(4) is found at the tricritical point.Comment: 7 pages with 3 figure

    Mixed initial conditions to estimate the dynamic critical exponent in short-time Monte Carlo simulation

    Full text link
    We explore the initial conditions in short-time critical dynamics to propose a new method to evaluate the dynamic exponent z. Estimates are obtained with high precision for 2D Ising model and 2D Potts model for three and four states by performing heat-bath Monte Carlo simulations.Comment: Latex paper, 2 eps figure

    Stretched Polymers in Random Environment

    Full text link
    We survey recent results and open questions on the ballistic phase of stretched polymers in both annealed and quenched random environments.Comment: Dedicated to Erwin Bolthausen on the occasion of his 65th birthda

    Exciton Condensation and Perfect Coulomb Drag

    Get PDF
    Coulomb drag is a process whereby the repulsive interactions between electrons in spatially separated conductors enable a current flowing in one of the conductors to induce a voltage drop in the other. If the second conductor is part of a closed circuit, a net current will flow in that circuit. The drag current is typically much smaller than the drive current owing to the heavy screening of the Coulomb interaction. There are, however, rare situations in which strong electronic correlations exist between the two conductors. For example, bilayer two-dimensional electron systems can support an exciton condensate consisting of electrons in one layer tightly bound to holes in the other. One thus expects "perfect" drag; a transport current of electrons driven through one layer is accompanied by an equal one of holes in the other. (The electrical currents are therefore opposite in sign.) Here we demonstrate just this effect, taking care to ensure that the electron-hole pairs dominate the transport and that tunneling of charge between the layers is negligible.Comment: 12 pages, 4 figure

    Dynamical frustration in ANNNI model and annealing

    Full text link
    Zero temperature quench in the Axial Next Nearest Neighbour Ising (ANNNI) model fails to bring it to its ground state for a certain range of values of the frustration parameter Îș\kappa, the ratio of the next nearest neighbour antiferromagnetic interaction strength to the nearest neighbour one. We apply several annealing methods, both classical and quantum, and observe that the behaviour of the residual energy and the order parameter depends on the value of Îș\kappa strongly. Classical or thermal annealing is found to be adequate for small values of Îș\kappa. However, neither classical nor quantum annealing is effective at values of Îș\kappa close to the fully frustrated point Îș=0.5\kappa=0.5, where the residual energy shows a very slow algebraic decay with the number of MCS.Comment: 6 pages,10 figures, to be published in Proceedings of " The International Workshop on Quantum annealing and other Optimization Methods
    • 

    corecore