15 research outputs found

    Systematic Identification of Balanced Transposition Polymorphisms in Saccharomyces cerevisiae

    Get PDF
    High-throughput techniques for detecting DNA polymorphisms generally do not identify changes in which the genomic position of a sequence, but not its copy number, varies among individuals. To explore such balanced structural polymorphisms, we used array-based Comparative Genomic Hybridization (aCGH) to conduct a genome-wide screen for single-copy genomic segments that occupy different genomic positions in the standard laboratory strain of Saccharomyces cerevisiae (S90) and a polymorphic wild isolate (Y101) through analysis of six tetrads from a cross of these two strains. Paired-end high-throughput sequencing of Y101 validated four of the predicted rearrangements. The transposed segments contained one to four annotated genes each, yet crosses between S90 and Y101 yielded mostly viable tetrads. The longest segment comprised 13.5 kb near the telomere of chromosome XV in the S288C reference strain and Southern blotting confirmed its predicted location on chromosome IX in Y101. Interestingly, inter-locus crossover events between copies of this segment occurred at a detectable rate. The presence of low-copy repetitive sequences at the junctions of this segment suggests that it may have arisen through ectopic recombination. Our methodology and findings provide a starting point for exploring the origins, phenotypic consequences, and evolutionary fate of this largely unexplored form of genomic polymorphism

    Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression

    No full text
    Genome-wide association studies (GWAS) have identified numerous genetic variants associated with complex diseases, but mechanistic insights are impeded by a lack of understanding of how specific risk variants functionally contribute to the underlying pathogenesis. It has been proposed that cis-acting effects of non-coding risk variants on gene expression are a major factor for phenotypic variation of complex traits and disease susceptibility. Recent genome-scale epigenetic studies have highlighted the enrichment of GWAS-identified variants in regulatory DNA elements of disease-relevant cell types. Furthermore, single nucleotide polymorphism (SNP)-specific changes in transcription factor binding are correlated with heritable alterations in chromatin state and considered a major mediator of sequence-dependent regulation of gene expression. Here we describe a novel strategy to functionally dissect the cis-acting effect of genetic risk variants in regulatory elements on gene expression by combining genome-wide epigenetic information with clustered regularly-interspaced short palindromic repeats (CRISPR)/Cas9 genome editing in human pluripotent stem cells. By generating a genetically precisely controlled experimental system, we identify a common Parkinson’s disease associated risk variant in a non-coding distal enhancer element that regulates the expression of α-synuclein (SNCA), a key gene implicated in the pathogenesis of Parkinson’s disease. Our data suggest that the transcriptional deregulation of SNCA is associated with sequence-dependent binding of the brain-specific transcription factors EMX2 and NKX6-1. This work establishes an experimental paradigm to functionally connect genetic variation with disease-relevant phenotypes.National Institutes of Health (U.S.) (1R01NS088538-01)National Institutes of Health (U.S.) (2R01MH104610-15)Qatar National Research Fund (Grant NPRP 5-531-1-094
    corecore