382 research outputs found
An inducible chaperone adapts proteasome assembly to stress
The proteasome is essential for the selective degradation of most cellular proteins. To survive overwhelming demands on the proteasome arising during environmental stresses, cells increase proteasome abundance. Proteasome assembly is known to be complex. How stressed cells overcome this vital challenge is unknown. In an unbiased suppressor screen aimed at rescuing the defects of a yeast Rpt6 thermosensitive proteasome mutant, we identified a protein, hereafter named Adc17, as it functions as an ATPase dedicated chaperone. Adc17 interacts with the amino terminus of Rpt6 to assist formation of the Rpt6-Rpt3 ATPase pair, an early step in proteasome assembly. Adc17 is important for cell fitness, and its absence aggravates proteasome defects. The abundance of Adc17 increases upon proteasome stresses, and its function is crucial to maintain homeostatic proteasome levels. Thus, cells have mechanisms to adjust proteasome assembly when demands increase, and Adc17 is a critical effector of this process
Nuclear DNA Replication in Trypanosomatids:There Are No Easy Methods for Solving Difficult Problems
In trypanosomatids, etiological agents of devastating diseases, replication is robust and finely controlled to maintain genome stability and function in stressful environments. However, these parasites encode several replication protein components and complexes that show potentially variant composition compared with model eukaryotes. This review focuses on the advances made in recent years regarding the differences and peculiarities of the replication machinery in trypanosomatids, including how such divergence might affect DNA replication dynamics and the replication stress response. Comparing the DNA replication machinery and processes of parasites and their hosts may provide a foundation for the identification of targets that can be used in the development of chemotherapies to assist in the eradication of diseases caused by these pathogens
Factors affecting milk cortisol in mid lactating dairy cows
Background: Whether the measurement of cortisol in dairy cows can be used as a biomarker of adverse
environmental or pathophysiological conditions is still under of scientific debate. In these situations, several systems
mainly the hypothalamic-pituitary-adrenal axis, the autonomic nervous system, and the immune system are
recruited to reestablish homeostasis. A first aim of the present study was to compare milk and blood cortisol
concentrations and to consider its variability in milk in relation to farm, milk yield and days in milk. A second study
investigates the effects of breed, class of somatic cell count (SCC) and farm on milk cortisol levels in a larger
number of cows and farms, with the aim to validate the results obtained in the pilot study.
Methods: For study 1, 135 cows were sampled from 2 Italian Simmental and 2 Italian Holstein commercial farms,
whilst in the second study, 542 cows were sampled from 6 commercial farms of Italian Simmental and 499 cows
from 4 commercial farms of Italian Holstein.
Results: In study 1, the values of cortisol content in milk were significantly higher in Holstein than Simmental cows.
Significant differences between farms were observed for milk and plasma cortisol concentrations. Cortisol content
in milk was not correlated to plasma content in study 1 and the mean milk to plasma cortisol ratio was about 1:30.
In study 2, for Holstein cows, significantly higher values of milk cortisol in comparison to Simmental cows was
reported. A significant effect of class of SCC was observed, cows belonging to class 3 (SCC higher than 400.000/ml)
showed the highest mean values of milk cortisol. The farm effect was significant also in the study 2, confirming the
results obtained in the first study.
Conclusions: Milk can be considered a preferential site of sampling in dairy cows to point out short term
stimulation of the hypothalamic-pituitary-adrenal axis. Further studies are needed to investigate the physiological
basis of the relationship between milk cortisol content and bree
Search for CP violation in D+→ϕπ+ and D+s→K0Sπ+ decays
A search for CP violation in D + → ϕπ + decays is performed using data collected in 2011 by the LHCb experiment corresponding to an integrated luminosity of 1.0 fb−1 at a centre of mass energy of 7 TeV. The CP -violating asymmetry is measured to be (−0.04 ± 0.14 ± 0.14)% for candidates with K − K + mass within 20 MeV/c 2 of the ϕ meson mass. A search for a CP -violating asymmetry that varies across the ϕ mass region of the D + → K − K + π + Dalitz plot is also performed, and no evidence for CP violation is found. In addition, the CP asymmetry in the D+s→K0Sπ+ decay is measured to be (0.61 ± 0.83 ± 0.14)%
Study of decays to the final state and evidence for the decay
A study of decays is performed for the first time
using data corresponding to an integrated luminosity of 3.0
collected by the LHCb experiment in collisions at centre-of-mass energies
of and TeV. Evidence for the decay
is reported with a significance of 4.0 standard deviations, resulting in the
measurement of
to
be .
Here denotes a branching fraction while and
are the production cross-sections for and mesons.
An indication of weak annihilation is found for the region
, with a significance of
2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html,
link to supplemental material inserted in the reference
Response of lymphocyte subsets and cytokines to Shenyang prescription in Sprague-Dawley rats with tongue squamous cell carcinomas induced by 4NQO
BACKGROUND: The study was designed to investigate immunocompetence in relation to cancer progression in rat and to assess the effect of the traditional Chinese anti-cancer medicine, "Shenyang" prescription, on immunity. METHODS: 4-Nitroquinoline-1-oxide (4NQO) was administered to 80 Sprague-Dawley (SD) rats via the drinking water for up to 36 weeks. Tongue squamous cell carcinoma (SCC) was confirmed by pathological examination in 61 rats. "Shenyang" prescription was administered to subgroups of these rats, and blood samples were taken before and after treatment. Lymphocyte subsets were determined by flow cytometry. Serum Th1 and Th2-type cytokines were assessed by an enzyme-linked immunosorbent assay. RESULTS: As the cancer progressed at the tongue root, the percentage of CD3+CD4+ T lymphocytes and NK cells and the levels of IFN-γ and IL-2 decreased gradually, while the percentage of CD3+CD8+ T lymphocytes and the levels of IL-4 and IL-10 increased. The CD4+/CD8+ ratios were lower in the cancer groups than in the control group. However, after administering "Shenyang" prescription, the levels of CD3+CD4+ T lymphocytes, NK cells, IFN-γ and IL-2 increased, while the CD3+CD8+ T lymphocyte counts and the levels of IL-4 and IL-10 decreased. CONCLUSION: 4NQO-induced lesions were good models for exploring oral cavity carcinogenesis. The rats with 4NQO-induced SCC demonstrated abnormalities in lymphocyte subsets and a shift from Th1-type to Th2-type, which were good models for assessing the effect of anticancer agent on immunity. Oral cancer progression was associated with an aggressive disturbance of immune function. "Shenyang" prescription has the ability to improve the disturbance of immune function
Bootstrapping the energy flow in the beginning of life.
This paper suggests that the energy flow on which all living structures depend only started up slowly, the low-energy, initial phase starting up a second, slightly more energetic phase, and so on. In this way, the build up of the energy flow follows a bootstrapping process similar to that found in the development of computers, the first generation making possible the calculations necessary for constructing the second one, etc. In the biogenetic upstart of an energy flow, non-metals in the lower periods of the Periodic Table of Elements would have constituted the most primitive systems, their operation being enhanced and later supplanted by elements in the higher periods that demand more energy. This bootstrapping process would put the development of the metabolisms based on the second period elements carbon, nitrogen and oxygen at the end of the evolutionary process rather than at, or even before, the biogenetic even
Multisite Phosphorylation Provides an Effective and Flexible Mechanism for Switch-Like Protein Degradation
Phosphorylation-triggered degradation is a common strategy for elimination of regulatory proteins in many important cell signaling processes. Interesting examples include cyclin-dependent kinase inhibitors such as p27 in human and Sic1 in yeast, which play crucial roles during the G1/S transition in the cell cycle. In this work, we have modeled and analyzed the dynamics of multisite-phosphorylation-triggered protein degradation systematically. Inspired by experimental observations on the Sic1 protein and a previous intriguing theoretical conjecture, we develop a model to examine in detail the degradation dynamics of a protein featuring multiple phosphorylation sites and a threshold site number for elimination in response to a kinase signal. Our model explains the role of multiple phosphorylation sites, compared to a single site, in the regulation of protein degradation. A single-site protein cannot convert a graded input of kinase increase to much sharper output, whereas multisite phosphorylation is capable of generating a highly switch-like temporal profile of the substrate protein with two characteristics: a temporal threshold and rapid decrease beyond the threshold. We introduce a measure termed temporal response coefficient to quantify the extent to which a response in the time domain is switch-like and further investigate how this property is determined by various factors including the kinase input, the total number of sites, the threshold site number for elimination, the order of phosphorylation, the kinetic parameters, and site preference. Some interesting and experimentally verifiable predictions include that the non-degradable fraction of the substrate protein exhibits a more switch-like temporal profile; a sequential system is more switch-like, while a random system has the advantage of increased robustness; all the parameters, including the total number of sites, the threshold site number for elimination and the kinetic parameters synergistically determine the exact extent to which the degradation profile is switch-like. Our results suggest design principles for protein degradation switches which might be a widespread mechanism for precise regulation of cellular processes such as cell cycle progression
Two approaches to the study of the origin of life.
This paper compares two approaches that attempt to explain the origin of life, or biogenesis. The more established approach is one based on chemical principles, whereas a new, yet not widely known approach begins from a physical perspective. According to the first approach, life would have begun with - often organic - compounds. After having developed to a certain level of complexity and mutual dependence within a non-compartmentalised organic soup, they would have assembled into a functioning cell. In contrast, the second, physical type of approach has life developing within tiny compartments from the beginning. It emphasises the importance of redox reactions between inorganic elements and compounds found on two sides of a compartmental boundary. Without this boundary, ¿life¿ would not have begun, nor have been maintained; this boundary - and the complex cell membrane that evolved from it - forms the essence of life
- …