1,158 research outputs found

    Mean field effects in a trapped classical gas

    Full text link
    In this article, we investigate mean field effects for a bosonic gas harmonically trapped above the transition temperature in the collisionless regime. We point out that those effects can play also a role in low dimensional system. Our treatment relies on the Boltzmann equation with the inclusion of the mean field term. The equilibrium state is first discussed. The dispersion relation for collective oscillations (monopole, quadrupole, dipole modes) is then derived. In particular, our treatment gives the frequency of the monopole mode in an isotropic and harmonic trap in the presence of mean field in all dimensions.Comment: 4 pages, no figure submitted to Phys. Rev.

    Multilayered feed forward Artificial Neural Network model to predict the average summer-monsoon rainfall in India

    Full text link
    In the present research, possibility of predicting average summer-monsoon rainfall over India has been analyzed through Artificial Neural Network models. In formulating the Artificial Neural Network based predictive model, three layered networks have been constructed with sigmoid non-linearity. The models under study are different in the number of hidden neurons. After a thorough training and test procedure, neural net with three nodes in the hidden layer is found to be the best predictive model.Comment: 19 pages, 1 table, 3 figure

    Radiation recoil from highly distorted black holes

    Get PDF
    We present results from numerical evolutions of single black holes distorted by axisymmetric, but equatorially asymmetric, gravitational (Brill) waves. Net radiated energies, apparent horizon embeddings, and recoil velocities are shown for a range of Brill wave parameters, including both even and odd parity distortions of Schwarzschild black holes. We find that a wave packet initially concentrated on the black hole throat, a likely model also for highly asymmetric stellar collapse and late stage binary mergers, can generate a maximum recoil velocity of about 150 (23) km/sec for even (odd) parity perturbations, significantly less than that required to eject black holes from galactic cores.Comment: 15 pages, 8 figure

    Vortex states in binary mixture of Bose-Einstein condensates

    Full text link
    The vortex configurations in the Bose-Einstein condensate of the mixture of two different spin states |F=1,m_f=-1> and |2,1> of ^{87}Rb atoms corresponding to the recent experiments by Matthews et. al. (Phys. Rev. Lett. 83, 2498 (1999)) are considered in the framework of the Thomas-Fermi approximation as functions of N_2/N_1, where N_1 is the number of atoms in the state |1,-1> and N_2 - in the state |2,1>. It is shown that for nonrotating condensates the configuration with the |1,-1> fluid forming the shell about the |2,1> fluid (configuration "a") has lower energy than the opposite configuration (configuration "b") for all values of N_2/N_1. When the |1,-1> fluid has net angular momentum and forms an equatorial ring around the resting central condensate |2,1>, the total energy of the system is higher than the ground energy, but the configuration "a" has lower energy than the configuration "b" for all N_2/N_1. On the other hand, when the |2> fluid has the net angular momentum, for the lowest value of the angular momentum \hbar l (l=1) there is the range of the ratio N_2/N_1 where the configuration "b" has lower energy than the configuration "a". For higher values of the angular momentum the configuration "b" is stable for all values of N_2/N_1.Comment: minor changes, references adde

    Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance.

    Get PDF
    The fungal pathogen Candida glabrata has emerged as a major health threat since it readily acquires resistance to multiple drug classes, including triazoles and/or echinocandins. Thus far, cellular mechanisms promoting the emergence of resistance to multiple drug classes have not been described in this organism. Here we demonstrate that a mutator phenotype caused by a mismatch repair defect is prevalent in C. glabrata clinical isolates. Strains carrying alterations in mismatch repair gene MSH2 exhibit a higher propensity to breakthrough antifungal treatment in vitro and in mouse models of colonization, and are recovered at a high rate (55% of all C. glabrata recovered) from patients. This genetic mechanism promotes the acquisition of resistance to multiple antifungals, at least partially explaining the elevated rates of triazole and multi-drug resistance associated with C. glabrata. We anticipate that identifying MSH2 defects in infecting strains may influence the management of patients on antifungal drug therapy

    Evolutionary trait‐based approaches for predicting future global impacts of plant pathogens in the genus Phytophthora

    Get PDF
    Plant pathogens are introduced to new geographical regions ever more frequently as global connectivity increases. Predicting the threat they pose to plant health can be difficult without in‐depth knowledge of behaviour, distribution and spread. Here, we evaluate the potential for using biological traits and phylogeny to predict global threats from emerging pathogens. We use a species‐level trait database and phylogeny for 179 Phytophthora species: oomycete pathogens impacting natural, agricultural, horticultural and forestry settings. We compile host and distribution reports for Phytophthora species across 178 countries and evaluate the power of traits, phylogeny and time since description (reflecting species‐level knowledge) to explain and predict their international transport, maximum latitude and host breadth using Bayesian phylogenetic generalised linear mixed models. In the best‐performing models, traits, phylogeny and time since description together explained up to 90%, 97% and 87% of variance in number of countries reached, latitudinal limits and host range, respectively. Traits and phylogeny together explained up to 26%, 41% and 34% of variance in the number of countries reached, maximum latitude and host plant families affected, respectively, but time since description had the strongest effect. Root‐attacking species were reported in more countries, and on more host plant families than foliar‐attacking species. Host generalist pathogens had thicker‐walled resting structures (stress‐tolerant oospores) and faster growth rates at their optima. Cold‐tolerant species are reported in more countries and at higher latitudes, though more accurate interspecific empirical data are needed to confirm this finding. Policy implications. We evaluate the potential of an evolutionary trait‐based framework to support horizon‐scanning approaches for identifying pathogens with greater potential for global‐scale impacts. Potential future threats from Phytophthora include Phytophthora x heterohybrida, P. lactucae, P. glovera, P. x incrassata, P. amnicola and P. aquimorbida, which are recently described, possibly under‐reported species, with similar traits and/or phylogenetic proximity to other high‐impact species. Priority traits to measure for emerging species may be thermal minima, oospore wall index and growth rate at optimum temperature. Trait‐based horizon‐scanning approaches would benefit from the development of international and cross‐sectoral collaborations to deliver centralised databases incorporating pathogen distributions, traits and phylogeny

    Collective excitations of a two-dimensional interacting Bose gas in anti-trap and linear external potentials

    Full text link
    We present a method of finding approximate analytical solutions for the spectra and eigenvectors of collective modes in a two-dimensional system of interacting bosons subjected to a linear external potential or the potential of a special form u(x,y)=Ό−ucosh⁥2x/lu(x,y)=\mu -u \cosh^2 x/l, where ÎŒ\mu is the chemical potential. The eigenvalue problem is solved analytically for an artificial model allowing the unbounded density of the particles. The spectra of collective modes are calculated numerically for the stripe, the rare density valley and the edge geometry and compared with the analytical results. It is shown that the energies of the modes localized at the rare density region and at the edge are well approximated by the analytical expressions. We discuss Bose-Einstein condensation (BEC) in the systems under investigations at T≠0T\ne 0 and find that in case of a finite number of the particles the regime of BEC can be realized, whereas the condensate disappears in the thermodynamic limit.Comment: 10 pages, 2 figures include

    Strong 3D correlations in vortex system of Bi2212:Pb

    Full text link
    The experimental study of magnetic flux penetration under crossed magnetic fields in Bi2212:Pb single crystal performed by magnetooptic technique (MO) reveals remarkable field penetration pattern alteration (flux configuration change) and superconducting current anisotropy enhancement by the in-plane field. The anisotropy increases with the temperature rise up to Tm=54±2KT_m = 54 \pm 2 K. At T=TmT = T_m an abrupt change in the flux behavior is found; the correlation between the in-plane magnetic field and the out-of-plane magnetic flux penetration disappears. No correlation is observed for T>TmT > T_m. The transition temperature TmT_m does not depend on the magnetic field strength. The observed flux penetration anisotropy is considered as an evidence of a strong 3D - correlation between pancake vortices in different CuO planes at T<TmT < T_m. This enables understanding of a remarkable pinning observed in Bi2212:Pb at low temperatures.Comment: 8 pages, 9 figure

    Magnetism in Dense Quark Matter

    Full text link
    We review the mechanisms via which an external magnetic field can affect the ground state of cold and dense quark matter. In the absence of a magnetic field, at asymptotically high densities, cold quark matter is in the Color-Flavor-Locked (CFL) phase of color superconductivity characterized by three scales: the superconducting gap, the gluon Meissner mass, and the baryonic chemical potential. When an applied magnetic field becomes comparable with each of these scales, new phases and/or condensates may emerge. They include the magnetic CFL (MCFL) phase that becomes relevant for fields of the order of the gap scale; the paramagnetic CFL, important when the field is of the order of the Meissner mass, and a spin-one condensate associated to the magnetic moment of the Cooper pairs, significant at fields of the order of the chemical potential. We discuss the equation of state (EoS) of MCFL matter for a large range of field values and consider possible applications of the magnetic effects on dense quark matter to the astrophysics of compact stars.Comment: To appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye

    Visual fixation and continuous head rotations have minimal effect on set-point adaptation to magnetic vestibular stimulation

    Get PDF
    Background: Strong static magnetic fields such as those in an MRI machine can induce sensations of self-motion and nystagmus. The proposed mechanism is a Lorentz force resulting from the interaction between strong static magnetic fields and ionic currents in the inner ear endolymph that causes displacement of the semicircular canal cupulae. Nystagmus persists throughout an individual's exposure to the magnetic field, though its slow-phase velocity partially declines due to adaptation. After leaving the magnetic field an after effect occurs in which the nystagmus and sensations of rotation reverse direction, reflecting the adaptation that occurred while inside the MRI. However, the effects of visual fixation and of head shaking on this early type of vestibular adaptation are unknown. Methods: Three-dimensional infrared video-oculography was performed in six individuals just before, during (5, 20, or 60 min) and after (4, 15, or 20 min) lying supine inside a 7T MRI scanner. Trials began by entering the magnetic field in darkness followed 60 s later, either by light with visual fixation and head still, or by continuous yaw head rotations (2 Hz) in either darkness or light with visual fixation. Subjects were always placed in darkness 10 or 30 s before exiting the bore. In control conditions subjects remained in the dark with the head still for the entire duration. Results: In darkness with head still all subjects developed horizontal nystagmus inside the magnetic field, with slow-phase velocity partially decreasing over time. An after effect followed on exiting the magnet, with nystagmus in the opposite direction. Nystagmus was suppressed during visual fixation; however, after resuming darkness just before exiting the magnet, nystagmus returned with velocity close to the control condition and with a comparable after effect. Similar after effects occurred with continuous yaw head rotations while in the scanner whether in darkness or light. Conclusions: Visual fixation and sustained head shaking either in the dark or with fixation inside a strong static magnetic field have minimal impact on the short-term mechanisms that attempt to null unwanted spontaneous nystagmus when the head is still, so called VOR set-point adaptation. This contrasts with the critical influence of vision and slippage of images on the retina on the dynamic (gain and direction) components of VOR adaptation
    • 

    corecore