2,054 research outputs found
Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 1, Data summary
This report presents the results of geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavation of the Exploratory Studies Facility (ESF) North Ramp. The is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the feasibility of locating a potential high-level nuclear waste repository on lands adjacent to the Nevada Test Site, Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan. This report is volume 1 of the data summary
A Fast and Accurate Diagnostic Test for Severe Sepsis Using Kernel Classifiers
Severe sepsis occurs frequently in the intensive care unit (ICU) and is a leading cause of admission, mortality, and cost. Treatment guidelines recommend early intervention, however gold standard blood culture test results may return in up to 48 hours. Insulin sensitivity (SI) is known to decrease with worsening condition and inflammatory response, and could thus be used to aid clinical treatment decisions. Some glycemic control protocols are able to accurately identify SI in real-time.
A biomarker for severe sepsis was developed from retrospective SI and concurrent temperature, heart rate, respiratory rate, blood pressure, and SIRS score from 36 adult patients with sepsis. Patients were identified as having sepsis based on a clinically validated sepsis score (ss) of 2 or higher (ss = 0â4 for increasing severity). Kernel density estimates were used for the development of joint probability density profiles for ss = 2 and ss < 2 data hours (213 and 5858 respectively of 6071 total hours) and for classification. From the receiver operator characteristic (ROC) curve, the optimal probability cutoff values for classification were determined for in-sample and out-of-sample estimates.
A biomarker including concurrent insulin sensitivity and clinical data for the diagnosis of severe sepsis (ss = 2) achieves 69â94% sensitivity, 75â94% specificity, 0.78â0.99 AUC, 3â17 LHR+, 0.06â0.4 LHR-, 9â38% PPV, 99â100% NPV, and a diagnostic odds ratio of 7â260 for optimal probability cutoff values of 0.32 and 0.27 for in-sample and out-of-sample data, respectively. The overall result lies between these minimum and maximum error bounds. Thus, the clinical biomarker shows good to high accuracy and may provide useful information as a real-time diagnostic test for severe sepsis
Semiclassical Quantization for the Spherically Symmetric Systems under an Aharonov-Bohm magnetic flux
The semiclassical quantization rule is derived for a system with a
spherically symmetric potential and an
Aharonov-Bohm magnetic flux. Numerical results are presented and compared with
known results for models with . It is shown that the
results provided by our method are in good agreement with previous results. One
expects that the semiclassical quantization rule shown in this paper will
provide a good approximation for all principle quantum number even the rule is
derived in the large principal quantum number limit . We also discuss
the power parameter dependence of the energy spectra pattern in this
paper.Comment: 13 pages, 4 figures, some typos correcte
Spin-3/2 random quantum antiferromagnetic chains
We use a modified perturbative renormalization group approach to study the
random quantum antiferromagnetic spin-3/2 chain. We find that in the case of
rectangular distributions there is a quantum Griffiths phase and we obtain the
dynamical critical exponent as a function of disorder. Only in the case of
extreme disorder, characterized by a power law distribution of exchange
couplings, we find evidence that a random singlet phase could be reached. We
discuss the differences between our results and those obtained by other
approaches.Comment: 4 page
Suppression of the structural phase transition and lattice softening in slightly underdoped Ba(1-x)K(x)Fe2As2 with electronic phase separation
We present x-ray powder diffraction (XRPD) and neutron diffraction
measurements on the slightly underdoped iron pnictide superconductor
Ba(1-x)K(x)Fe2As2, Tc = 32K. Below the magnetic transition temperature Tm =
70K, both techniques show an additional broadening of the nuclear Bragg peaks,
suggesting a weak structural phase transition. However, macroscopically the
system does not break its tetragonal symmetry down to 15 K. Instead, XRPD
patterns at low temperature reveal an increase of the anisotropic microstrain
proportionally in all directions. We associate this effect with the electronic
phase separation, previously observed in the same material, and with the effect
of lattice softening below the magnetic phase transition. We employ density
functional theory to evaluate the distribution of atomic positions in the
presence of dopant atoms both in the normal and magnetic states, and to
quantify the lattice softening, showing that it can account for a major part of
the observed increase of the microstrain.Comment: 7 pages, 4 figure
A glassy contribution to the heat capacity of hcp He solids
We model the low-temperature specific heat of solid He in the hexagonal
closed packed structure by invoking two-level tunneling states in addition to
the usual phonon contribution of a Debye crystal for temperatures far below the
Debye temperature, . By introducing a cutoff energy in the
two-level tunneling density of states, we can describe the excess specific heat
observed in solid hcp He, as well as the low-temperature linear term in the
specific heat. Agreement is found with recent measurements of the temperature
behavior of both specific heat and pressure. These results suggest the presence
of a very small fraction, at the parts-per-million (ppm) level, of two-level
tunneling systems in solid He, irrespective of the existence of
supersolidity.Comment: 11 pages, 4 figure
Real space renormalization group approach to the 2d antiferromagnetic Heisenberg model
The low energy behaviour of the 2d antiferromagnetic Heisenberg model is
studied in the sector with total spins by means of a renormalization
group procedure, which generates a recursion formula for the interaction matrix
of 4 neighbouring " clusters" of size ,
from the corresponding quantities . Conservation
of total spin is implemented explicitly and plays an important role. It is
shown, how the ground state energies , approach each
other for increasing , i.e. system size. The most relevant couplings in the
interaction matrices are generated by the transitions
between the ground states
() on an -cluster of size , mediated
by the staggered spin operator Comment: 18 pages, 8 figures, RevTe
STM characterization of the Si-P heterodimer
We use scanning tunneling microscopy (STM) and Auger electron spectroscopy to
study the behavior of adsorbed phosphine (PH) on Si(001), as a function
of annealing temperature, paying particular attention to the formation of the
Si-P heterodimer. Dosing the Si(001) surface with 0.002 Langmuirs of
PH results in the adsorption of PH (x=2,3) onto the surface and
some etching of Si to form individual Si ad-dimers. Annealing to 350C
results in the incorporation of P into the surface layer to form Si-P
heterodimers and the formation of short 1-dimensional Si dimer chains and
monohydrides. In filled state STM images, isolated Si-P heterodimers appear as
zig-zag features on the surface due to the static dimer buckling induced by the
heterodimer. In the presence of a moderate coverage of monohydrides this static
buckling is lifted, rending the Si-P heterodimers invisible in filled state
images. However, we find that we can image the heterodimer at all H coverages
using empty state imaging. The ability to identify single P atoms incorporated
into Si(001) will be invaluable in the development of nanoscale electronic
devices based on controlled atomic-scale doping of Si.Comment: 6 pages, 4 figures (only 72dpi
The Random-bond Potts model in the large-q limit
We study the critical behavior of the q-state Potts model with random
ferromagnetic couplings. Working with the cluster representation the partition
sum of the model in the large-q limit is dominated by a single graph, the
fractal properties of which are related to the critical singularities of the
random Potts model. The optimization problem of finding the dominant graph, is
studied on the square lattice by simulated annealing and by a combinatorial
algorithm. Critical exponents of the magnetization and the correlation length
are estimated and conformal predictions are compared with numerical results.Comment: 7 pages, 6 figure
- âŠ