28 research outputs found

    Controlled mobility in stochastic and dynamic wireless networks

    Get PDF
    We consider the use of controlled mobility in wireless networks where messages arriving randomly in time and space are collected by mobile receivers (collectors). The collectors are responsible for receiving these messages via wireless transmission by dynamically adjusting their position in the network. Our goal is to utilize a combination of wireless transmission and controlled mobility to improve the throughput and delay performance in such networks. First, we consider a system with a single collector. We show that the necessary and sufficient stability condition for such a system is given by ρ<1 where ρ is the expected system load. We derive lower bounds for the expected message waiting time in the system and develop policies that are stable for all loads ρ<1 and have asymptotically optimal delay scaling. We show that the combination of mobility and wireless transmission results in a delay scaling of Θ([1 over 1−ρ]) with the system load ρ, in contrast to the Θ([1 over (1−ρ)[superscript 2]]) delay scaling in the corresponding system without wireless transmission, where the collector visits each message location. Next, we consider the system with multiple collectors. In the case where simultaneous transmissions to different collectors do not interfere with each other, we show that both the stability condition and the delay scaling extend from the single collector case. In the case where simultaneous transmissions to different collectors interfere with each other, we characterize the stability region of the system and show that a frame-based version of the well-known Max-Weight policy stabilizes the system asymptotically in the frame length.National Science Foundation (U.S.) (Grant CNS-0915988)United States. Army Research Office. Multidisciplinary University Research Initiative (Grant W911NF-08-1-0238

    On the decay rate[s] of buffer[s] in continuous flow lines

    No full text

    A fluid queue driven by a fluid queue

    No full text

    Second-order asymptotics in level crossing for differences of renewal processes

    Get PDF
    AbstractWe consider level crossing for the difference of independent renewal processes. Second-order expansions for the distribution function of the crossing time of level n are found, as n → ∞. As a by-product several other results on the difference process are found. The expected minimum of the difference process appears to play an important role in the analysis. This makes this problem essentially harder than the level crossing for the sum process which was studied earlier

    A fluid queue driven by a fluid queue

    No full text

    A Markov renewal approach to an opportunistic replacement model in continuous time

    No full text
    corecore