707 research outputs found
Recommended from our members
A Collapse Surface for Perforated Plates with Triangular Patterns for Ligament Efficiencies Between 0.05 and 0.50
Collapse surfaces are developed for thick perforated plates containing a triangular penetration pattern with ligament efficiencies of 0.05, 0.10, 0.15, 0.2, 0.3, and 0.5 using elastic-perfectly plastic FEA analysis. The FEA data was fit to a fourth-order collapse function which is appropriate for the development of an equivalent solid elastic-perfectly plastic plasticity model for perforated plates with triangular penetration patterns. This type of model can be conveniently used to develop a limit load capability for perforated plate analysis. It was shown that the fourth-order function is reasonable for ligament efficiencies between 0.15 to 0.5. Comparing the fourth-order collapse function to FEA data suggests that an alternate collapse function is needed for ligament efficiencies less than 0.15. A linear interpolation method was shown to be appropriate for ligament efficiencies between 0.15 and 0.5
Recommended from our members
Thickness effects on the plastic collapse of perforated plates with triangular penetration patterns
This paper investigates the effects of plate thickness on the accuracy of limit load solutions obtained using an elastic-perfectly plastic [EPP] equivalent solid [EQS] procedure for flat perforated plates with a triangular array of penetrations. The EQS approach for limit loads is based on an EQS collapse surface that is valid for generalized plane strain. This assumption is applicable for very thick plates but is known to be less reasonable for very thin plates where plane stress may be a better assumption. The limits of applicability of the generalized plane strain assumption are investigated by obtaining limit load solutions for perforated plates of various thicknesses that are subjected to in-plane and bending loads. Plastic limit load solutions obtained using three-dimensional EPP finite element analysis [FEA] of models which include each penetration explicitly are compared with solutions obtained using the EQS approximation. The penetration pattern chosen for this study has a ligament efficiency (ligament width-to-pitch ratio, h/P) of 0.32. For plates thicker than the pitch, the limit load calculated using the EQS method for both in-plane and bending loads is shown to be very accurate (within 4%) of the limit load calculated for the explicit model. On the other hand, for thin plates (t/P< 2), the EQS limit load is 5% greater than the explicit limit load for bending and 8% greater than the explicit limit load for in-plane loads. For thinner plates, the collapse surface is tied to the local geometry deformation and, hence, an equivalent solid plate representation of plastic collapse is a function of deformation mode and thickness
Quantum saturation and condensation of excitons in CuO: a theoretical study
Recent experiments on high density excitons in CuO provide evidence for
degenerate quantum statistics and Bose-Einstein condensation of this nearly
ideal gas. We model the time dependence of this bosonic system including
exciton decay mechanisms, energy exchange with phonons, and interconversion
between ortho (triplet-state) and para (singlet-state) excitons, using
parameters for the excitonic decay, the coupling to acoustic and low-lying
optical phonons, Auger recombination, and ortho-para interconversion derived
from experiment. The single adjustable parameter in our model is the
optical-phonon cooling rate for Auger and laser-produced hot excitons. We show
that the orthoexcitons move along the phase boundary without crossing it (i.e.,
exhibit a ``quantum saturation''), as a consequence of the balance of entropy
changes due to cooling of excitons by phonons and heating by the non-radiative
Auger two-exciton recombination process. The Auger annihilation rate for
para-para collisions is much smaller than that for ortho-para and ortho-ortho
collisions, explaining why, under the given experimental conditions, the
paraexcitons condense while the orthoexcitons fail to do so.Comment: Revised to improve clarity and physical content 18 pages, revtex,
figures available from G. Kavoulakis, Physics Department, University of
Illinois, Urban
Electron spin coherence in semiconductors: Considerations for a spin-based solid state quantum computer architecture
We theoretically consider coherence times for spins in two quantum computer
architectures, where the qubit is the spin of an electron bound to a P donor
impurity in Si or within a GaAs quantum dot. We show that low temperature
decoherence is dominated by spin-spin interactions, through spectral diffusion
and dipolar flip-flop mechanisms. These contributions lead to 1-100 s
calculated spin coherence times for a wide range of parameters, much higher
than former estimates based on measurements.Comment: Role of the dipolar interaction clarified; Included discussion on the
approximations employed in the spectral diffusion calculation. Final version
to appear in Phys. Rev.
Auger decay of degenerate and Bose-condensed excitons in CuO
We study the non-radiative Auger decay of excitons in CuO, in which two
excitons scatter to an excited electron and hole. The exciton decay rate for
the direct and the phonon-assisted processes is calculated from first
principles; incorporating the band structure of the material leads to a
relatively shorter lifetime of the triplet state ortho excitons. We compare our
results with the Auger decay rate extracted from data on highly degenerate
triplet excitons and Bose-condensed singlet excitons in CuO.Comment: 15 pages, revtex, figures available from G. Kavoulaki
Quantum cellular automata quantum computing with endohedral fullerenes
We present a scheme to perform universal quantum computation using global
addressing techniques as applied to a physical system of endohedrally doped
fullerenes. The system consists of an ABAB linear array of Group V endohedrally
doped fullerenes. Each molecule spin site consists of a nuclear spin coupled
via a Hyperfine interaction to an electron spin. The electron spin of each
molecule is in a quartet ground state . Neighboring molecular electron
spins are coupled via a magnetic dipole interaction. We find that an
all-electron construction of a quantum cellular automata is frustrated due to
the degeneracy of the electronic transitions. However, we can construct a
quantum celluar automata quantum computing architecture using these molecules
by encoding the quantum information on the nuclear spins while using the
electron spins as a local bus. We deduce the NMR and ESR pulses required to
execute the basic cellular automata operation and obtain a rough figure of
merit for the the number of gate operations per decoherence time. We find that
this figure of merit compares well with other physical quantum computer
proposals. We argue that the proposed architecture meets well the first four
DiVincenzo criteria and we outline various routes towards meeting the fifth
criteria: qubit readout.Comment: 16 pages, Latex, 5 figures, See http://planck.thphys.may.ie/QIPDDF/
submitted to Phys. Rev.
First measurement of direct photoproduction on the proton
We report on the results of the first measurement of exclusive
meson photoproduction on protons for GeV and GeV. Data were collected with the CLAS detector at the Thomas
Jefferson National Accelerator Facility. The resonance was detected via its
decay in the channel by performing a partial wave analysis of the
reaction . Clear evidence of the meson
was found in the interference between and waves at GeV. The -wave differential cross section integrated in the mass range of
the was found to be a factor of 50 smaller than the cross section
for the meson. This is the first time the meson has been
measured in a photoproduction experiment
Event-by-Event Fluctuations in Particle Multiplicities and Transverse Energy Produced in 158.A GeV Pb+Pb collisions
Event-by-event fluctuations in the multiplicities of charged particles and
photons, and the total transverse energy in 158 GeV Pb+Pb collisions
are studied for a wide range of centralities. For narrow centrality bins the
multiplicity and transverse energy distributions are found to be near perfect
Gaussians. The effect of detector acceptance on the multiplicity fluctuations
has been studied and demonstrated to follow statistical considerations. The
centrality dependence of the charged particle multiplicity fluctuations in the
measured data has been found to agree reasonably well with those obtained from
a participant model. However for photons the multiplicity fluctuations has been
found to be lower compared to those obtained from a participant model. The
multiplicity and transverse energy fluctuations have also been compared to
those obtained from the VENUS event generator.Comment: To appear in Physical Review C; changes : more detailed discussion on
errors and few figures modifie
- âŠ