27 research outputs found
Relativistic Electromagnetic Mass Models: Charged Dust Distribution in Higher Dimensions
Electromagnetic mass models are proved to exist in higher dimensional theory
of general relativity corresponding to charged dust distribution. Along with
the general proof a specific example is also sited as a supporting candidate.Comment: Latex, 7 pages. Accepted in Astrophysics and Space Scienc
Static perfect fluids with Pant-Sah equations of state
We analyze the 3-parameter family of exact, regular, static, spherically
symmetric perfect fluid solutions of Einstein's equations (corresponding to a
2-parameter family of equations of state) due to Pant and Sah and
"rediscovered" by Rosquist and the present author. Except for the Buchdahl
solutions which are contained as a limiting case, the fluids have finite radius
and are physically realistic for suitable parameter ranges. The equations of
state can be characterized geometrically by the property that the 3-metric on
the static slices, rescaled conformally with the fourth power of any linear
function of the norm of the static Killing vector, has constant scalar
curvature. This local property does not require spherical symmetry; in fact it
simplifies the the proof of spherical symmetry of asymptotically flat solutions
which we recall here for the Pant-Sah equations of state. We also consider a
model in Newtonian theory with analogous geometric and physical properties,
together with a proof of spherical symmetry of the asymptotically flat
solutions.Comment: 32 p., Latex, minor changes and correction
Collapsing shear-free perfect fluid spheres with heat flow
A global view is given upon the study of collapsing shear-free perfect fluid
spheres with heat flow. We apply a compact formalism, which simplifies the
isotropy condition and the condition for conformal flatness. This formalism
also presents the simplest possible version of the main junction condition,
demonstrated explicitly for conformally flat and geodesic solutions. It gives
the right functions to disentangle this condition into well known differential
equations like those of Abel, Riccati, Bernoulli and the linear one. It yields
an alternative derivation of the general solution with functionally dependent
metric components. We bring together the results for static and time- dependent
models to describe six generating functions of the general solution to the
isotropy equation. Their common features and relations between them are
elucidated. A general formula for separable solutions is given, incorporating
collapse to a black hole or to a naked singularity.Comment: 26 page
The global burden of cancer attributable to risk factors, 2010–19: a systematic analysis for the Global Burden of Disease Study 2019
BACKGROUND: Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. METHODS: The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk–outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. FINDINGS: Globally, in 2019, the risk factors included in this analysis accounted for 4·45 million (95% uncertainty interval 4·01–4·94) deaths and 105 million (95·0–116) DALYs for both sexes combined, representing 44·4% (41·3–48·4) of all cancer deaths and 42·0% (39·1–45·6) of all DALYs. There were 2·88 million (2·60–3·18) risk-attributable cancer deaths in males (50·6% [47·8–54·1] of all male cancer deaths) and 1·58 million (1·36–1·84) risk-attributable cancer deaths in females (36·3% [32·5–41·3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20·4% (12·6–28·4) and DALYs by 16·8% (8·8–25·0), with the greatest percentage increase in metabolic risks (34·7% [27·9–42·8] and 33·3% [25·8–42·0]). INTERPRETATION: The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden