8 research outputs found

    Exterior and interior metrics with quadrupole moment

    Full text link
    We present the Ernst potential and the line element of an exact solution of Einstein's vacuum field equations that contains as arbitrary parameters the total mass, the angular momentum, and the quadrupole moment of a rotating mass distribution. We show that in the limiting case of slowly rotating and slightly deformed configuration, there exists a coordinate transformation that relates the exact solution with the approximate Hartle solution. It is shown that this approximate solution can be smoothly matched with an interior perfect fluid solution with physically reasonable properties. This opens the possibility of considering the quadrupole moment as an additional physical degree of freedom that could be used to search for a realistic exact solution, representing both the interior and exterior gravitational field generated by a self-gravitating axisymmetric distribution of mass of perfect fluid in stationary rotation.Comment: Latex, 15 pages, 3 figures, final versio

    Exact General Relativistic Thick Disks

    Get PDF
    A method to construct exact general relativistic thick disks that is a simple generalization of the ``displace, cut and reflect'' method commonly used in Newtonian, as well as, in Einstein theory of gravitation is presented. This generalization consists in the addition of a new step in the above mentioned method. The new method can be pictured as a ``displace, cut, {\it fill} and reflect'' method. In the Newtonian case, the method is illustrated in some detail with the Kuzmin-Toomre disk. We obtain a thick disk with acceptable physical properties. In the relativistic case two solutions of the Weyl equations, the Weyl gamma metric (also known as Zipoy-Voorhees metric) and the Chazy-Curzon metric are used to construct thick disks. Also the Schwarzschild metric in isotropic coordinates is employed to construct another family of thick disks. In all the considered cases we have non trivial ranges of the involved parameter that yield thick disks in which all the energy conditions are satisfied.Comment: 11 pages, RevTex, 9 eps figs. Accepted for publication in PR

    The Dynamical Behaviour of Test Particles in a Quasi-Spherical Spacetime and the Physical Meaning of Superenergy

    Full text link
    We calculate the instantaneous proper radial acceleration of test particles (as measured by a locally defined Lorentzian observer) in a Weyl spacetime, close to the horizon. As expected from the Israel theorem, there appear some bifurcations with respect to the spherically symmetric case (Schwarzschild), which are explained in terms of the behaviour of the superenergy, bringing out the physical relevance of this quantity in the study of general relativistic systems.Comment: 14 pages, Latex. 4 figures. New references added. Typos corrected. To appear in Int. J. Theor. Phy

    Electrovacuum Static Counterrotating Relativistic Dust Disks

    Get PDF
    A detailed study is presented of the counterrotating model (CRM) for generic electrovacuum static axially symmetric relativistic thin disks without radial pressure. We find a general constraint over the counterrotating tangential velocities needed to cast the surface energy-momentum tensor of the disk as the superposition of two counterrotating charged dust fluids. We also find explicit expressions for the energy densities, charge densities and velocities of the counterrotating fluids. We then show that this constraint can be satisfied if we take the two counterrotating streams as circulating along electro-geodesics. However, we show that, in general, it is not possible to take the two counterrotating fluids as circulating along electro-geodesics nor take the two counterrotating tangential velocities as equal and opposite. Four simple families of models of counterrotating charged disks based on Chazy-Curzon-like, Zipoy-Voorhees-like, Bonnor-Sackfield-like and Kerr-like electrovacuum solutions are considered where we obtain some disks with a CRM well behaved. The models are constructed using the well-known ``displace, cut and reflect'' method extended to solutions of vacuum Einstein-Maxwell equations.Comment: 19 pages, 16 figures, revtex
    corecore