123 research outputs found

    Ablation of lysophosphatidic acid receptor 1 attenuates hypertrophic cardiomyopathy in a mouse model.

    Get PDF
    Myocardial fibrosis is a key pathologic feature of hypertrophic cardiomyopathy (HCM). However, the fibrotic pathways activated by HCM-causing sarcomere protein gene mutations are poorly defined. Because lysophosphatidic acid is a mediator of fibrosis in multiple organs and diseases, we tested the role of the lysophosphatidic acid pathway in HCM. Lysphosphatidic acid receptor 1 (LPAR1), a cell surface receptor, is required for lysophosphatidic acid mediation of fibrosis. We bred HCM mice carrying a pathogenic myosin heavy-chain variant (403(+/-)) with Lpar1-ablated mice to create mice carrying both genetic changes (403(+/-) LPAR1(-/-)) and assessed development of cardiac hypertrophy and fibrosis. Compared with 403(+/-) LPAR1(WT), 403(+/-) LPAR1(-/-) mice developed significantly less hypertrophy and fibrosis. Single-nucleus RNA sequencing of left ventricular tissue demonstrated that Lpar1 was predominantly expressed by lymphatic endothelial cells (LECs) and cardiac fibroblasts. Lpar1 ablation reduced the population of LECs, confirmed by immunofluorescence staining of the LEC markers Lyve1 and Ccl21a and, by in situ hybridization, for Reln and Ccl21a. Lpar1 ablation also altered the distribution of fibroblast cell states. FB1 and FB2 fibroblasts decreased while FB0 and FB3 fibroblasts increased. Our findings indicate that Lpar1 is expressed predominantly by LECs and fibroblasts in the heart and is required for development of hypertrophy and fibrosis in an HCM mouse model. LPAR1 antagonism, including agents in clinical trials for other fibrotic diseases, may be beneficial for HCM

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Overview of the JET results in support to ITER

    Get PDF

    Maternal immunization confers protection against neonatal herpes simplex mortality and behavioral morbidity

    No full text
    Neonatal herpes simplex virus (nHSV) infections cause devastating morbidity and mortality in infants. Most nHSV cases are associated with primary maternal infection, consistent with the hypothesis that maternal immunity is protective. In humans, we found HSV-specific neutralizing antibodies in newborns of immune mothers, indicating that placentally transferred HSV-specific antibody is protective. Using a murine model, we showed that passive administration of HSV-specific antibody to dams prevented disseminated infection and mortality in pups. Maternal immunization with an HSV-2 replication-defective vaccine candidate, dl5-29, led to transfer of HSV-specific antibodies into neonatal circulation that protected against nHSV neurological disease and death. Furthermore, we observed considerable anxiety-like behavior in adult mice that had been infected with low doses of HSV as neonates, despite a notable lack of signs of infection. This phenotype suggests that nHSV infection can have an unsuspected and permanent impact on behavior. These behavioral sequelae of nHSV were prevented by maternal immunization with dl5-29, demonstrating an unexpected benefit of immunization. These findings also support the general concept that maternal immunization can prevent neurotropic neonatal infections and associated morbidity and mortality.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Identification of regulators of the innate immune response to cytosolic DNA and retroviral infection by an integrative approach

    No full text
    The innate immune system senses viral DNA that enters mammalian cells, or in aberrant situations self-DNA, and triggers type I interferon production. Here we present an integrative approach that combines quantitative proteomics, genomics and small molecule perturbations to identify genes involved in this pathway. We silenced 809 candidate genes, measured the response to dsDNA and connected resulting hits with the known signaling network. We identified ABCF1 as a critical protein that associates with dsDNA and the DNA-ensing components HMGB2 and IFI204. We also found that CDC37 regulates the stability of the signaling molecule TBK1 and that chemical inhibition of the CDC37-HSP90 interaction and several other pathway regulators potently modulates the innate immune response to DNA and retroviral infection
    corecore