52 research outputs found

    The non-random walk of stock prices: The long-term correlation between signs and sizes

    Full text link
    We investigate the random walk of prices by developing a simple model relating the properties of the signs and absolute values of individual price changes to the diffusion rate (volatility) of prices at longer time scales. We show that this benchmark model is unable to reproduce the diffusion properties of real prices. Specifically, we find that for one hour intervals this model consistently over-predicts the volatility of real price series by about 70%, and that this effect becomes stronger as the length of the intervals increases. By selectively shuffling some components of the data while preserving others we are able to show that this discrepancy is caused by a subtle but long-range non-contemporaneous correlation between the signs and sizes of individual returns. We conjecture that this is related to the long-memory of transaction signs and the need to enforce market efficiency.Comment: 9 pages, 5 figures, StatPhys2

    The electron capture in 163Ho experiment – ECHo

    Full text link

    Woody Plant Encroachment Mitigated Differentially by Fire and Herbicide

    No full text
    Woodland expansion is a global phenomenon that, despite receiving substantial attention in recent years, remains poorly understood. Landscape change of this magnitude has several impacts perceived as negative on landscape processes, such as influencing fire regimes, habitat for wildlife, and hydrological processes. In southern Great Plains, Juniperus virginiana has been identified as a major contributor to woodland expansion. Adding to the perplexity of this phenomenon is its evidence on numerous landscape types on several continents, documented under varying climates. Our study aimed to quantify a direct treatment to reduce or slow down woodland expansion in an experimental rangeland in central Oklahoma, United States under three treatments: 1) herbicide, 2) fire with herbicide, and 3) control (no fire, no herbicide) within areas classified as “open grassland” in 1979. Thereafter, we identified these same areas in 2010 with remotely sensed imagery (Light Detection And Ranging) to quantify 1) total encroachment and 2) total encroachment by three size classes: a) small 1 − 2.5 m, b) intermediate 2.5 − 4.5 m and c) tall > 4.5 m. Overall, of the total area classified as grassland in 1979 (277.64 ha), 31% had been encroached by 2010. Encroachment was greatest in the control treatments, followed by herbicide-only treatment application and lowest in the fire and herbicide treatment with minor differences in mean plant height (4.11 m ± 0.28). Encroached areas were mostly dominated by tall individuals (45 ± 3.5%), followed by the intermediate-height class (31.53 ± 1.10%) and the least recorded in the smallest-height class (23.46 ± 2.29%), suggesting expansion occurred during the initial phases of treatment application. The costly practice of herbicide application did not provide a feasible solution to control further woodland expansion. However, when using herbicide with fire, woodland expansion was reduced, highlighting the effectiveness of early intervention by fire in reducing encroachment. This further supports landscape-scale studies highlighting the effect of fire to reduce woodland expansion.The Rangeland Ecology & Management archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact [email protected] for further information

    A hierarchical perspective to woody plant encroachment for conservation of prairie-chickens

    Get PDF
    Encroachment of Great Plains grasslands by fire-sensitive woody plants is a large-scale, regional process that fragments grassland landscapes. Using prairie grouse (Tympanuchus spp.) of conservation concern,we apply hierarchy theory to demonstrate how regional processes constrain lower-level processes and reduce the success of local management. For example, fire and grazingmanagementmay be locally important to conservation, but the application of fire and grazing disturbances rarely cause irreversible fragmentation of grasslands in the Great Plains. These disturbance processes cause short-term alterations in vegetation conditions that can be positive or negative, but from a long-term perspective fire maintains large tracts of continuous rangelands by limiting woody plant encroachment. Conservation efforts for prairie grouse should be focused on landscape processes that contribute to landscape fragmentation, such as increased dominance of trees or conversion to other land uses. In fact, reliance on localmanagement (e.g.,maintaining vegetation structure) to alter prairie grouse vital rates is less important to grouse population persistence given contemporary landscape level changes. Changing grass height, litter depth, or increasing the cover of forbs may impact a fewremaining prairie-chickens, but itwill not create useable space at a scale relevant to the historic conditions that existed before land conversion and fire suppression.The Rangeland Ecology & Management archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact [email protected] for further information

    Understanding the context of network traffic alerts

    No full text
    For the protection of critical infrastructures against complex virus attacks, automated network traffic analysis and deep packet inspection are unavoidable. However, even with the use of network intrusion detection systems, the number of alerts is still too large to analyze manually. In addition, the discovery of domain-specific multi stage viruses (e.g., Advanced Persistent Threats) are typically not captured by a single alert. The result is that security experts are overloaded with low-level technical alerts where they must look for the presence of an APT. In this paper we propose an alert-oriented visual analytics approach for the exploration of network traffic content in multiple contexts. In our approach CoNTA (Contextual analysis of Network Traffic Alerts), experts are supported to discover threats in large alert collections through interactive exploration using selections and attributes of interest. Tight integration between machine learning and visualization enables experts to quickly drill down into the alert collection and report false alerts back to the intrusion detection system. Finally, we show the effectiveness of the approach by applying it on real world and artificial data sets
    corecore