17 research outputs found

    Evaluating genetic susceptibility to Staphylococcus aureus bacteremia in African Americans using admixture mapping

    No full text
    The incidence of Staphylococcus aureus bacteremia (SAB) is significantly higher in African American (AA) than in European-descended populations. We used admixture mapping (AM) to test the hypothesis that genomic variations with different frequencies in European and African ancestral genomes influence susceptibility to SAB in AAs. A total of 565 adult AAs (390 cases with SAB; 175 age-matched controls) were genotyped for AM analysis. A case-only admixture score and a mixed χ 2 (1df) score (MIX) to jointly evaluate both single-nucleotide polymorphism (SNP) and admixture association (P<5.00e-08) were computed using MIXSCORE. In addition, a permutation scheme was implemented to derive multiplicity adjusted P-values (genome-wide 0.05 significance threshold: P<9.46e-05). After empirical multiplicity adjustment, one region on chromosome 6 (52 SNPs, P=4.56e-05) in the HLA class II region was found to exhibit a genome-wide statistically significant increase in European ancestry. This region encodes genes involved in HLA-mediated immune response and these results provide additional evidence for genetic variation influencing HLA-mediated immunity, modulating susceptibility to SAB. © 2017 Macmillan Publishers Limited. All rights reserved

    Lentiviral and Adeno-Associated Vector-Based Therapy for Motor Neuron Disease Through RNAi

    No full text
    RNAi holds promise for neurodegenerative disorders caused by gain-of-function mutations. We and others have demonstrated proof-of-principle for viral-mediated RNAi in a mouse model of motor neuron disease. Lentivirus and adeno-associated virus have been used to knockdown levels of mutated superoxide dismutase 1 (SOD1) in the G93A SOD1 mouse model of familial amyotrophic lateral sclerosis (fALS) to result in beneficial therapeutic outcomes. This chapter describes the design, production, and titration of lentivirus and adeno-associated virus capable of mediating SOD1 knockdown in vivo. The delivery of the virus to the spinal cord directly, through intraspinal injection, or indirectly, through intramuscular injection, is also described, as well as the methods pertaining to the analysis of spinal cord transduction, SOD1 silencing, and determination of motor neuron protectio
    corecore