36 research outputs found
Multi-objective optimisation for receiver operating characteristic analysis
Copyright © 2006 Springer-Verlag Berlin Heidelberg. The final publication is available at link.springer.comBook title: Multi-Objective Machine LearningSummary
Receiver operating characteristic (ROC) analysis is now a standard tool for the comparison of binary classifiers and the selection operating parameters when the costs of misclassification are unknown.
This chapter outlines the use of evolutionary multi-objective optimisation techniques for ROC analysis, in both its traditional binary classification setting, and in the novel multi-class ROC situation.
Methods for comparing classifier performance in the multi-class case, based on an analogue of the Gini coefficient, are described, which leads to a natural method of selecting the classifier operating point. Illustrations are given concerning synthetic data and an application to Short Term Conflict Alert