522 research outputs found

    Radio-Continuum study of the Nearby Sculptor Group Galaxies. Part 1: NGC 300 at lambda = 20 cm

    Full text link
    A series of new radio-continuum (lambda=20 cm) mosaic images focused on the NGC 300 galactic system were produced using archived observational data from the VLA and/or ATCA. These new images are both very sensitive (rms=60 microJy) and feature high angular resolution (<10"). The most prominent new feature is the galaxy's extended radio-continuum emission, which does not match its optical appearance. Using these newly created images a number of previously unidentified discrete sources have been discovered. Furthermore, we demonstrate that a joint deconvolution approach to imaging this complete data-set is inferior when compared to an immerge approach.Comment: 13 pages, 12 figures, accepted to APSS, new version to correct the missing reference

    Efficient Recursion Method for Inverting Overlap Matrix

    Full text link
    A new O(N) algorithm based on a recursion method, in which the computational effort is proportional to the number of atoms N, is presented for calculating the inverse of an overlap matrix which is needed in electronic structure calculations with the the non-orthogonal localized basis set. This efficient inverting method can be incorporated in several O(N) methods for diagonalization of a generalized secular equation. By studying convergence properties of the 1-norm of an error matrix for diamond and fcc Al, this method is compared to three other O(N) methods (the divide method, Taylor expansion method, and Hotelling's method) with regard to computational accuracy and efficiency within the density functional theory. The test calculations show that the new method is about one-hundred times faster than the divide method in computational time to achieve the same convergence for both diamond and fcc Al, while the Taylor expansion method and Hotelling's method suffer from numerical instabilities in most cases.Comment: 17 pages and 4 figure

    Two Mathematically Equivalent Versions of Maxwell's Equations

    Full text link
    This paper is a review of the canonical proper-time approach to relativistic mechanics and classical electrodynamics. The purpose is to provide a physically complete classical background for a new approach to relativistic quantum theory. Here, we first show that there are two versions of Maxwell's equations. The new version fixes the clock of the field source for all inertial observers. However now, the (natural definition of the effective) speed of light is no longer an invariant for all observers, but depends on the motion of the source. This approach allows us to account for radiation reaction without the Lorentz-Dirac equation, self-energy (divergence), advanced potentials or any assumptions about the structure of the source. The theory provides a new invariance group which, in general, is a nonlinear and nonlocal representation of the Lorentz group. This approach also provides a natural (and unique) definition of simultaneity for all observers. The corresponding particle theory is independent of particle number, noninvariant under time reversal (arrow of time), compatible with quantum mechanics and has a corresponding positive definite canonical Hamiltonian associated with the clock of the source. We also provide a brief review of our work on the foundational aspects of the corresponding relativistic quantum theory. Here, we show that the standard square-root and the Dirac equations are actually two distinct spin-12\tfrac{1}{2} particle equations.Comment: Appeared: Foundations of Physic

    Production and Decay of D_1(2420)^0 and D_2^*(2460)^0

    Get PDF
    We have investigated D+π−D^{+}\pi^{-} and D∗+π−D^{*+}\pi^{-} final states and observed the two established L=1L=1 charmed mesons, the D1(2420)0D_1(2420)^0 with mass 2421−2−2+1+22421^{+1+2}_{-2-2} MeV/c2^{2} and width 20−5−3+6+320^{+6+3}_{-5-3} MeV/c2^{2} and the D2∗(2460)0D_2^*(2460)^0 with mass 2465±3±32465 \pm 3 \pm 3 MeV/c2^{2} and width 28−7−6+8+628^{+8+6}_{-7-6} MeV/c2^{2}. Properties of these final states, including their decay angular distributions and spin-parity assignments, have been studied. We identify these two mesons as the jlight=3/2j_{light}=3/2 doublet predicted by HQET. We also obtain constraints on {\footnotesize ΓS/(ΓS+ΓD)\Gamma_S/(\Gamma_S + \Gamma_D)} as a function of the cosine of the relative phase of the two amplitudes in the D1(2420)0D_1(2420)^0 decay.Comment: 15 pages in REVTEX format. hardcopies with figures can be obtained by sending mail to: [email protected]

    Measurement of the branching fraction for Υ(1S)→τ+τ−\Upsilon (1S) \to \tau^+ \tau^-

    Full text link
    We have studied the leptonic decay of the Υ(1S)\Upsilon (1S) resonance into tau pairs using the CLEO II detector. A clean sample of tau pair events is identified via events containing two charged particles where exactly one of the particles is an identified electron. We find B(Υ(1S)→τ+τ−)=(2.61 ± 0.12 +0.09−0.13)B(\Upsilon(1S) \to \tau^+ \tau^-) = (2.61~\pm~0.12~{+0.09\atop{-0.13}})%. The result is consistent with expectations from lepton universality.Comment: 9 pages, RevTeX, two Postscript figures available upon request, CLNS 94/1297, CLEO 94-20 (submitted to Physics Letters B

    Measurement of the Decay Asymmetry Parameters in Λc+→Λπ+\Lambda_c^+ \to \Lambda\pi^+ and Λc+→Σ+π0\Lambda_c^+ \to \Sigma^+\pi^0

    Full text link
    We have measured the weak decay asymmetry parameters (\aLC ) for two \LC\ decay modes. Our measurements are \aLC = -0.94^{+0.21+0.12}_{-0.06-0.06} for the decay mode Λc+→Λπ+\Lambda_c^+ \to \Lambda\pi^+ and \aLC = -0.45\pm 0.31 \pm 0.06 for the decay mode Λc→Σ+π0\Lambda_c \to \Sigma^+\pi^0 . By combining these measurements with the previously measured decay rates, we have extracted the parity-violating and parity-conserving amplitudes. These amplitudes are used to test models of nonleptonic charmed baryon decay.Comment: 11 pages including the figures. Uses REVTEX and psfig macros. Figures as uuencoded postscript. Also available as http://w4.lns.cornell.edu/public/CLNS/1995/CLNS95-1319.p

    Bridging the Gap between Quantum Mechanics and Large-Scale Atomistic Simulation

    Get PDF
    The prospect of modeling across disparate length and time scales to achieve a predictive multiscale description of real materials properties has attracted widespread research interest in the last decade. To be sure, the challenges in such multiscale modeling are many, and in demanding cases, such as mechanical properties or dynamic phase transitions, multiple bridges extending from the atomic level all the way to the continuum level must be built. Although often overlooked in this process, one of the most fundamental and important problems in multiscale modeling is that of bridging the gap between first-principles quantum mechanics, from which true predictive power for real materials emanates, and the large-scale atomistic simulation of thousands or millions of atoms, which is usually essential to describe the complex atomic processes that link to higher length and time scales. For example, to model single-crystal plasticity at micron length scales via dislocation-dynamics simulations that evolve the detailed dislocation microstructure requires accurate large-scale atomistic information on the mobility and interaction of individual dislocations. Similarly, modeling the kinetics of structural phase transitions requires linking accurate large-scale atomistic information on nucleation processes with higher length and time scale growth processes

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)
    • …
    corecore