11 research outputs found

    Marine pelagic ecosystems: the West Antarctic Peninsula

    Get PDF
    The marine ecosystem of the West Antarctic Peninsula (WAP) extends from the Bellingshausen Sea to the northern tip of the peninsula and from the mostly glaciated coast across the continental shelf to the shelf break in the west. The glacially sculpted coastline along the peninsula is highly convoluted and characterized by deep embayments that are often interconnected by channels that facilitate transport of heat and nutrients into the shelf domain. The ecosystem is divided into three subregions, the continental slope, shelf and coastal regions, each with unique ocean dynamics, water mass and biological distributions. The WAP shelf lies within the Antarctic Sea Ice Zone (SIZ) and like other SIZs, the WAP system is very productive, supporting large stocks of marine mammals, birds and the Antarctic krill, Euphausia superba. Ecosystem dynamics is dominated by the seasonal and interannual variation in sea ice extent and retreat. The Antarctic Peninsula is one among the most rapidly warming regions on Earth, having experienced a 28C increase in the annual mean temperature and a 68C rise in the mean winter temperature since 1950. Delivery of heat from the Antarctic Circumpolar Current has increased significantly in the past decade, sufficient to drive to a 0.68C warming of the upper 300 m of shelf water. In the past 50 years and continuing in the twenty-first century, the warm, moist maritime climate of the northern WAP has been migrating south, displacing the once dominant cold, dry continental Antarctic climate and causing multi-level responses in the marine ecosystem. Ecosystem responses to the regional warming include increased heat transport, decreased sea ice extent and duration, local declines in icedependent AdeÂŽlie penguins, increase in ice-tolerant gentoo and chinstrap penguins, alterations in phytoplankton and zooplankton community composition and changes in krill recruitment, abundance and availability to predators. The climate/ecological gradients extending along theWAPand the presence of monitoring systems, field stations and long-term research programmes make the region an invaluable observatory of climate change and marine ecosystem response

    Composition and natural history of a Cerrado snake assemblage at Itirapina, SĂŁo Paulo state, southeastern Brazil

    Full text link

    Ornithological observations at Brabant Island, Antarctica

    Get PDF

    Environmental monitoring and management proposals for the Fildes Region, King George Island, Antarctica

    No full text
    The Antarctic terrestrial environment is under increasing pressure from human activities. The Fildes Region is characterized by high biodiversity, but is also a major logistic centre for the northern Antarctic Peninsula. Different interests, from scientific research, nature conservation, protection of geological and historical values, station operations, transport logistics and tourism, regularly overlap in space and time. This has led to increasing conflict among the multiple uses of the region and breaches of the legal requirements for environmental protection that apply in the area. The aim of this study was to assess the impacts of human activities in the Fildes Region by monitoring the distribution of bird and seal breeding sites and recording human activities and their associated environmental impacts. Data from an initial monitoring period 2003–06 were compared with data from 2008–10. We observed similar or increased levels of air, land and ship traffic, but fewer violations of overflight limits near Antarctic Specially Protected Area No. 150 Ardley Island. Open waste dumping and oil contamination are still major environmental impacts. Scientific and outdoor leisure activities undertaken by station personnel are more frequent than tourist activities and are likely to have a commensurate level of environmental impact. Despite the initial success of some existing management measures, it is essential that scientific and environmental values continue to be safeguarded, otherwise environmental impacts will increase and the habitat will be further degraded. We argue that the Fildes Region should be considered for designation as an Antarctic Specially Managed Area, a measure that has proven effective for environmental management of vulnerable areas of the Antarctic
    corecore