36 research outputs found
Density of states in d-wave superconductors disordered by extended impurities
The low-energy quasiparticle states of a disordered d-wave superconductor are
investigated theoretically. A class of such states, formed via tunneling
between the Andreev bound states that are localized around extended impurities
(and result from scattering between pair-potential lobes that differ in sign)
is identified. Its (divergent) contribution to the total density of states is
determined by taking advantage of connections with certain one-dimensional
random tight-binding models. The states under discussion should be
distinguished from those associated with nodes in the pair potential.Comment: 5 pages, 1 figur
Microwave conductivity of a d-wave superconductor disordered by extended impurities: a real-space renormalization group approach
Using a real-space renormalization group (RSRG) technique, we compute the
microwave conductivity of a d-wave superconductor disordered by extended
impurities. To do this, we invoke a semiclassical approximation which naturally
accesses the Andreev bound states localized near each impurity. Tunneling
corrections (which are captured using the RSRG) lead to a delocalization of
these quasiparticles and an associated contribution to the microwave
conductivity.Comment: 8 pages, 4 figures. 2 figures added to previous versio
Homogeneous Fermion Superfluid with Unequal Spin Populations
For decades, the conventional view is that an s-wave BCS superfluid can not
support uniform spin polarization due to a gap in the quasiparticle
excitation spectrum. We show that this is an artifact of the dismissal of
quasiparticle interactions in the conventional approach at the
outset. Such interactions can cause triplet fluctuations in the ground state
and hence non-zero spin polarization at "magnetic field" . The
resulting ground state is a pairing state of quasiparticles on the ``BCS
vacuum". For sufficiently large , the spin polarization of at unitarity
has the simple form . Our study is motivated by the recent
experiments at Rice which found evidence of a homogenous superfluid state with
uniform spin polarization.Comment: 4 pages, 3 figure
Pairing in spin polarized two-species fermionic mixtures with mass asymmetry
We discuss on the pairing mechanism of fermions with mismatch in their fermi
momenta due to a mass asymmetry. Using a variational ansatz for the ground
state we also discuss the BCS -BEC crossover of this system. It is shown that
the breached pairing solution with a single fermi surface is stable in the BEC
regime. We also include the temperatures effect on the fermion pairing within
an approximation that is valid for temperatures much below the critical
temperature.Comment: 8 pages and 6 figures, few typos corrected, version to appear in EPJ
Two different quasiparticle scattering rates in vortex line liquid phase of layered d-wave superconductors
We carry out a quantum mechanical analysis of the behavior of nodal
quasiparticles in the vortex line liquid phase of planar d-wave
superconductors. Applying a novel path integral technique we calculate a number
of experimentally relevant observables and demonstrate that in the low-field
regime the quasiparticle scattering rates deduced from photoemission and
thermal transport data can be markedly different from that extracted from
tunneling, specific heat, superfluid stiffness or spin-lattice relaxation time.Comment: Latex, 4 pages, no figure
Impurity and interface bound states in and superconductors
Motivated by recent discoveries of novel superconductors such as
NaCoOHO and SrRuO, we analysize features of
quasi-particle scattering due to impurities and interfaces for possible gapful
and Cooper pairing. A bound state appears near
a local impurity, and a band of bound states form near an interface. We
obtained analytically the bound state energy, and calculated the space and
energy dependent local density of states resolvable by high-resolution scanning
tunnelling microscopy. For comparison we also sketch results of impurity and
surface states if the pairing is nodal p- or d-wave.Comment: 4 pages, 4 figure
Flow and critical velocity of an imbalanced Fermi gas through an optical potential
Optical lattices offer the possibility to investigate the superfluid
properties of both Bose condensates and Fermionic superfluid gases. When a
population imbalance is present in a Fermi mixture, this leads to frustration
of the pairing, and the superfluid properties will be affected. In this
contribution, the influence of imbalance on the flow of a Fermi superfluid
through an optical lattice is investigated. The flow through the lattice is
analysed by taking into account coupling between neighbouring layers of the
optical lattice up to second order in the interlayer tunneling amplitude for
single atoms. The critical velocity of flow through the lattice is shown to
decrease monotonically to zero as the imbalance is increased to 100%.
Closed-form analytical expressions are given for the tunneling contribution to
the action and for the critical velocity as a function of the binding energy of
pairs in the (quasi) two-dimensional Fermi superfluid and as a function of the
imbalance.Comment: 8 pages, 1 figure, contribution for the QFS 2007 conferenc
Inhomogeneous Vortex Patterns in Rotating Bose-Einstein Condensates
We consider a 2D rotating Bose gas described by the Gross-Pitaevskii (GP)
theory and investigate the properties of the ground state of the theory for
rotational speeds close to the critical speed for vortex nucleation. While one
could expect that the vortex distribution should be homogeneous within the
condensate we prove by means of an asymptotic analysis in the strongly
interacting (Thomas-Fermi) regime that it is not. More precisely we rigorously
derive a formula due to Sheehy and Radzihovsky [Phys. Rev. A 70, 063620(R)
(2004)] for the vortex distribution, a consequence of which is that the vortex
distribution is strongly inhomogeneous close to the critical speed and
gradually homogenizes when the rotation speed is increased. From the
mathematical point of view, a novelty of our approach is that we do not use any
compactness argument in the proof, but instead provide explicit estimates on
the difference between the vorticity measure of the GP ground state and the
minimizer of a certain renormalized energy functional.Comment: 41 pages, journal ref: Communications in Mathematical Physics: Volume
321, Issue 3 (2013), Page 817-860, DOI : 10.1007/s00220-013-1697-
Condensed matter and AdS/CFT
I review two classes of strong coupling problems in condensed matter physics,
and describe insights gained by application of the AdS/CFT correspondence. The
first class concerns non-zero temperature dynamics and transport in the
vicinity of quantum critical points described by relativistic field theories. I
describe how relativistic structures arise in models of physical interest,
present results for their quantum critical crossover functions and
magneto-thermoelectric hydrodynamics. The second class concerns symmetry
breaking transitions of two-dimensional systems in the presence of gapless
electronic excitations at isolated points or along lines (i.e. Fermi surfaces)
in the Brillouin zone. I describe the scaling structure of a recent theory of
the Ising-nematic transition in metals, and discuss its possible connection to
theories of Fermi surfaces obtained from simple AdS duals.Comment: 39 pages, 12 figures; Lectures at the 5th Aegean summer school, "From
gravity to thermal gauge theories: the AdS/CFT correspondence", and the De
Sitter Lecture Series in Theoretical Physics 2009, University of Groninge
Competing orders in a magnetic field: spin and charge order in the cuprate superconductors
We describe two-dimensional quantum spin fluctuations in a superconducting
Abrikosov flux lattice induced by a magnetic field applied to a doped Mott
insulator. Complete numerical solutions of a self-consistent large N theory
provide detailed information on the phase diagram and on the spatial structure
of the dynamic spin spectrum. Our results apply to phases with and without
long-range spin density wave order and to the magnetic quantum critical point
separating these phases. We discuss the relationship of our results to a number
of recent neutron scattering measurements on the cuprate superconductors in the
presence of an applied field. We compute the pinning of static charge order by
the vortex cores in the `spin gap' phase where the spin order remains
dynamically fluctuating, and argue that these results apply to recent scanning
tunnelling microscopy (STM) measurements. We show that with a single typical
set of values for the coupling constants, our model describes the field
dependence of the elastic neutron scattering intensities, the absence of
satellite Bragg peaks associated with the vortex lattice in existing neutron
scattering observations, and the spatial extent of charge order in STM
observations. We mention implications of our theory for NMR experiments. We
also present a theoretical discussion of more exotic states that can be built
out of the spin and charge order parameters, including spin nematics and phases
with `exciton fractionalization'.Comment: 36 pages, 33 figures; for a popular introduction, see
http://onsager.physics.yale.edu/superflow.html; (v2) Added reference to new
work of Chen and Ting; (v3) reorganized presentation for improved clarity,
and added new appendix on microscopic origin; (v4) final published version
with minor change