25 research outputs found
Accurate simulation estimates of phase behaviour in ternary mixtures with prescribed composition
This paper describes an isobaric semi-grand canonical ensemble Monte Carlo
scheme for the accurate study of phase behaviour in ternary fluid mixtures
under the experimentally relevant conditions of prescribed pressure,
temperature and overall composition. It is shown how to tune the relative
chemical potentials of the individual components to target some requisite
overall composition and how, in regions of phase coexistence, to extract
accurate estimates for the compositions and phase fractions of individual
coexisting phases. The method is illustrated by tracking a path through the
composition space of a model ternary Lennard-Jones mixture.Comment: 6 pages, 3 figure
Adjusting the melting point of a model system via Gibbs-Duhem integration: application to a model of Aluminum
Model interaction potentials for real materials are generally optimized with
respect to only those experimental properties that are easily evaluated as
mechanical averages (e.g., elastic constants (at T=0 K), static lattice
energies and liquid structure). For such potentials, agreement with experiment
for the non-mechanical properties, such as the melting point, is not guaranteed
and such values can deviate significantly from experiment. We present a method
for re-parameterizing any model interaction potential of a real material to
adjust its melting temperature to a value that is closer to its experimental
melting temperature. This is done without significantly affecting the
mechanical properties for which the potential was modeled. This method is an
application of Gibbs-Duhem integration [D. Kofke, Mol. Phys.78, 1331 (1993)].
As a test we apply the method to an embedded atom model of aluminum [J. Mei and
J.W. Davenport, Phys. Rev. B 46, 21 (1992)] for which the melting temperature
for the thermodynamic limit is 826.4 +/- 1.3K - somewhat below the experimental
value of 933K. After re-parameterization, the melting temperature of the
modified potential is found to be 931.5K +/- 1.5K.Comment: 9 pages, 5 figures, 4 table