21,739 research outputs found

    GRAVSAT/GEOPAUSE covariance analysis including geopotential aliasing

    Get PDF
    A conventional covariance analysis for the GRAVSAT/GEOPAUSE mission is described in which the uncertainties of approximately 200 parameters, including the geopotential coefficients to degree and order 12, are estimated over three different tracking intervals. The estimated orbital uncertainties for both GRAVSAT and GEOPAUSE reach levels more accurate than presently available. The adjusted measurement bias errors approach the mission goal. Survey errors in the low centimeter range are achieved after ten days of tracking. The ability of the mission to obtain accuracies of geopotential terms to (12, 12) one to two orders of magnitude superior to present accuracy levels is clearly shown. A unique feature of this report is that the aliasing structure of this (12, 12) field is examined. It is shown that uncertainties for unadjusted terms to (12, 12) still exert a degrading effect upon the adjusted error of an arbitrarily selected term of lower degree and order. Finally, the distribution of the aliasing from the unestimated uncertainty of a particular high degree and order geopotential term upon the errors of all remaining adjusted terms is listed in detail

    Simulation of the Gravsat/Geopause mission

    Get PDF
    A simulation of the proposed low Gravsat and high Geopause satellite mission is presented. This mission promises fundamental improvements in the accuracy of low order geopotential coefficients by using satellite-to-satellite tracking technology coupled with a global sampling of the gravity field. Ten days of data from six stations are assumed. A drag compensation system for the low satellite is also postulated. The results show a one to two order of magnitude improvement in the accuracy of the low order coefficients through degree 8 and order 6. These results are easily adjusted to reflect a different data accuracy level and low satellite altitude

    Long and short arc altitude determination for GEOS-C

    Get PDF
    The accuracy with which the GEOS-C altitude may be estimated over long (7 day) and short (40 minute) orbital arcs is investigated. Over the long are excellent agreement was attained between a simulation of the orbit determination process and a covariance analysis. Both approaches yielded RMS altitude errors of about 1.5 meters over the Caribbean calibration area and approximately 7.5 meters overall. The geopotential was identified as the largest error source. For the short arc, the covariance analysis revealed that the propagated altitude error is linearly dependent upon station survey component errors which are also the largest source of altitude errors. An Appendix contains the mathematics of covariance analysis as applied to orbit determination

    Nimbus 6 Doppler processing using the Fairbanks calibration platform

    Get PDF
    A weighted least squares processor is examined. Research conducted in support of the NASA satellite aided Search and Rescue program is presented. An estimated NIMBUS 6 ephemeris, accurate to 1.5-2.5 km and 0.5-2.5 m/s relative to a reference orbit, is obtained during the three day signal transmission period. This suggests updating the knowledge of the relay satellite ephemeris by one reference beacon is needed during the Search and Rescue demonstration

    Detection of Other Planetary Systems Using Photometry

    Get PDF
    Detection of extrasolar short-period planets, particularly if they are in the liquid-water zone, would be one of the most exciting discoveries of our lifetime. A well-planned space mission has the capability of making this discovery using the photometric method. An Earth-sized planet transiting a Sun-like star will cause a decrease in the apparent luminosity of the star by one part in 10,000 with a duration of about 12 hours and a period of about one year. Given a random orientation of orbital plane alignments with the line-of-sight to a star, and assuming our solar system to be typical, one would expect 1 percent of the stars monitored to exhibit planetary transits. A null result would also be significant and indicate that Earth-sized planets are rare. For the mission to be successful one needs a sensor system that can simultaneously monitor many thousands of stars with a photometric precision of one part in 30,000 per hour of integration. Confirmation of a detection will involve detection of a second transit that will yield a period and predict the time for a third and subsequent transits. The technology issues that need to be addressed are twofold: one is for an appropriate optical design; the other is for a detector system with the necessary photometric precision. Two candidates for the detector system are silicon diodes and CCD's

    The use of accruals to manage reported earnings: theory and evidence

    Get PDF
    This paper develops a model in which firm managers maximize their own compensation by using accruals to manage reported earnings. The results of the model suggest that the form of the managerial compensation function and managerial time preferences may have an important influence on the relationship between accruals and latent earnings. Among the possible relationships suggested by the model are strategies we call Smooth Income, Occasional Big Bath, Live for Today, and Maximize Variability, each of which suggests a different reporting strategy pursued by managers. Most empirical tests of accruals are inconsistent with this and other theoretical models because they include a single earnings variable in a linear regression analysis. Instead, we document the reporting of accruals by two firms, Sunbeam and Citicorp, that is consistent with the “Live for Today” and “Occasional Big Bath” strategies.Investments

    State estimation and absolute image registration for geosynchronous satellites

    Get PDF
    Spacecraft state estimation and the absolute registration of Earth images acquired by cameras onboard geosynchronous satellites are described. The basic data type of the procedure consists of line and element numbers of image points called landmarks whose geodetic coordinates, relative to United States Geodetic Survey topographic maps, are known. A conventional least squares process is used to estimate navigational parameters and camera pointing biases from observed minus computed landmark line and element numbers. These estimated parameters along with orbit and attitude dynamic models are used to register images, using an automated grey level correlation technique, inside the span represented by the landmark data. In addition, the dynamic models can be employed to register images outside of the data span in a near real time mode. An important application of this mode is in support of meteorological studies where rapid data reduction is required for the rapid tracking and predicting of dynamic phenomena

    The 'gated-diode' configuration in MOSFET's, a sensitive tool for characterizing hot-carrier degradation

    Get PDF
    This paper describes a new measurement technique, the forward gated-diode current characterized at low drain voltages to be applied in MOSFET's for investigating hot-carrier stress-induced defects at high spatial resolution. The generation/recombination current in the drain-to-substrate diode as a function of gate voltage, combined with two-dimensional numerical simulation, provides a sensitive tool for detecting the spatial distribution and density of interface defects. In the case of strong accumulation, additional information is obtained from interband tunneling processes occurring via interface defects. The various mechanisms for generating interface defects and fixed charges at variable stress conditions are discussed, showing that information complementary to that available from other methods is obtaine

    Coarse-grained interaction potentials for polyaromatic hydrocarbons

    Get PDF
    Using Kohn-Sham density functional theory (KS-DFT), we have studied the interaction between various polyaromatic hydrocarbon molecules. The systems range from mono-cyclic benzene up to hexabenzocoronene (hbc). For several conventional exchange-correlation functionals potential energy curves of interaction of the π\pi-π\pi stacking hbc dimer are reported. It is found that all pure local density or generalized gradient approximated functionals yield qualitatively incorrect predictions regarding structure and interaction. Inclusion of a non-local, atom-centered correction to the KS-Hamiltonian enables quantitative predictions. The computed potential energy surfaces of interaction yield parameters for a coarse-grained potential, which can be employed to study discotic liquid-crystalline mesophases of derived polyaromatic macromolecules

    Observations on the Overwintering Potential of the Striped Cucumber Beetle (Coleoptera: Chrysomelidae) in Southern Minnesota

    Get PDF
    The striped cucumber beetle, Acalymma vittatum (Fabricius) (Coleoptera: Chrysomelidae), is an important pest of cucurbit crops. However, the overwinter- ing capacity of this pest in temperate regions is poorly understood. In this study, the in-field survival of A. vittatum was examined during three consecutive winters. In addition, the supercooling points of A. vittatum were determined as an index of cold hardiness for adults. During each winter, the survival of adults decreased significantly through time, with no individuals surviving until spring. By comparing the supercooling points and in-field survival of adults to soil temperatures, it appears that winter temperatures in Minnesota are cold enough to induce freezing of the beetles. Moreover, a considerable amount of mortality occurred before minimum monthly soil temperatures dropped below the supercooling point of overwintering individuals, suggesting the occurrence of prefreeze mortality. An improved understanding of the response of A. vittatum to winter temperatures in temperate regions may aid in early season management of this pest
    • …
    corecore