9,903 research outputs found
Semiclassical initial value calculations of collinear helium atom
Semiclassical calculations using the Herman-Kluk initial value treatment are
performed to determine energy eigenvalues of bound and resonance states of the
collinear helium atom. Both the configuration (where the classical motion
is fully chaotic) and the configuration (where the classical dynamics is
nearly integrable) are treated. The classical motion is regularized to remove
singularities that occur when the electrons collide with the nucleus. Very good
agreement is obtained with quantum energies for bound and resonance states
calculated by the complex rotation method.Comment: 24 pages, 3 figures. Submitted to J. Phys.
Historical-institutionalist perspectives on the development of the EU budget system
The EU budget has only recently started to feature in theories of European integration. Studies typically adopt a historical-institutionalist framework, exploring notions such as path dependency. They have, however, generally been rather aggregated, or coarse-grained, in their approach. The EU budget has thus been treated as a single entity rather than a series of inter-linked institutions. This paper seeks to address these lacunae by adopting a fine-grained approach. This enables us to emphasize the connections that exist between EU budgetary institutions, in both time and space. We show that the initial set of budgetary institutions was unable, over time, to achieve consistently their treaty-based objectives. In response, rather than reform these institutions at potentially high political cost, additional institutions were layered on top of the extant structures. We thus demonstrate how some EU budgetary institutions have remained unchanged, whilst others have been added or changed over time
The thermal and two-particle stress-energy must be ill-defined on the 2-d Misner space chronology horizon
We show that an analogue of the (four dimensional) image sum method can be
used to reproduce the results, due to Krasnikov, that for the model of a real
massless scalar field on the initial globally hyperbolic region IGH of
two-dimensional Misner space there exist two-particle and thermal Hadamard
states (built on the conformal vacuum) such that the (expectation value of the
renormalised) stress-energy tensor in these states vanishes on IGH. However, we
shall prove that the conclusions of a general theorem by Kay, Radzikowski and
Wald still apply for these states. That is, in any of these states, for any
point b on the Cauchy horizon and any neighbourhood N of b, there exists at
least one pair of non-null related points (x,x'), with x and x' in the
intersection of IGH with N, such that (a suitably differentiated form of) its
two-point function is singular. (We prove this by showing that the two-point
functions of these states share the same singularities as the conformal vacuum
on which they are built.) In other words, the stress-energy tensor in any of
these states is necessarily ill-defined on the Cauchy horizon.Comment: 6 pages, LaTeX, RevTeX, no figure
Long term operations of in-pile and out-of- pile thermionic converters, parts 1 and 2
In-pile life tests of cylindrical thermionic converter rods for Mark
Will current rotational grazing management recommendations suit future intensive pastoral systems?
This review aimed to determine whether current grazing management practices will suit future intensive rotationally grazed pastoral systems. A review of literature on grazing management recommendations found that there was good agreement on the ‘principles’ required for optimal grazing management. While these management practices have stood the test of time, it is concluded that shifts in external pressures (e.g., climate, plant selection and breeding, system intensification) compared to the period when farm-level grazing recommendations were first developed, may necessitate a rethink of current grazing recommendations. Examples include greater pasture masses (e.g., around 4000 kg dry matter (DM)/ha vs. the recommended range of 2600 to 3200 kg DM/ha) where short-rotation (annual, biennial) and tetraploid ryegrasses are sown, provided a consistent post-grazing residual can be maintained (possibly between 40- and 70- mm height). Milder winters and the use of ryegrass cultivars with higher growth rates in late winter/early spring may necessitate either lower target pasture covers at calving or shorter rotation lengths during winter. Longer grazing rotations (well beyond the 3-leaf stage, i.e., equivalent to deferred grazing) can be recommended for select paddocks from mid-spring into summer, to increase seasonal resilience across the farm. Longer residuals (even up to 70 mm - i.e., almost double the recommended height) might improve plant survival during periods of high stress (e.g., heatwaves, droughts). Lastly, diverse species pastures may require specific management to suit dominant species other than perennial ryegrass
Thermal divergences on the event horizons of two-dimensional black holes
The expectation value of the stress-energy tensor \langleT_{\mu\nu}\rangle
of a free conformally invariant scalar field is computed in a general static
two-dimensional black hole spacetime when the field is in either a zero
temperature vacuum state or a thermal state at a nonzero temperature. It is
found that for every static two-dimensional black hole the stress-energy
diverges strongly on the event horizon unless the field is in a state at the
natural black hole temperature which is defined by the surface gravity of the
event horizon. This implies that both extreme and nonextreme two-dimensional
black holes can only be in equilibrium with radiation at the natural black hole
temperature.Comment: 13 pages, REVTe
Optimal purification of thermal graph states
In this paper, a purification protocol is presented and its performance is
proven to be optimal when applied to a particular subset of graph states that
are subject to local Z-noise. Such mixed states can be produced by bringing a
system into thermal equilibrium, when it is described by a Hamiltonian which
has a particular graph state as its unique ground state. From this protocol, we
derive the exact value of the critical temperature above which purification is
impossible, as well as the related optimal purification rates. A possible
simulation of graph Hamiltonians is proposed, which requires only bipartite
interactions and local magnetic fields, enabling the tuning of the system
temperature.Comment: 5 pages, 4 figures v2: published versio
Interaction of Hawking radiation with static sources outside a Schwarzschild black hole
We show that the response rate of (i) a static source interacting with
Hawking radiation of massless scalar field in Schwarzschild spacetime (with the
Unruh vacuum) and that of (ii) a uniformly accelerated source with the same
proper acceleration in Minkowski spacetime (with the Minkowski vacuum) are
equal. We show that this equality will not hold if the Unruh vacuum is replaced
by the Hartle-Hawking vacuum. It is verified that the source responds to the
Hawking radiation near the horizon as if it were at rest in a thermal bath in
Minkowski spacetime with the same temperature. It is also verified that the
response rate in the Hartle-Hawking vacuum approaches that in Minkowski
spacetime with the same temperature far away from the black hole. Finally, we
compare our results with others in the literature.Comment: 18 pages (REVTEX
Best chirplet chain: near-optimal detection of gravitational wave chirps
The list of putative sources of gravitational waves possibly detected by the
ongoing worldwide network of large scale interferometers has been continuously
growing in the last years. For some of them, the detection is made difficult by
the lack of a complete information about the expected signal. We concentrate on
the case where the expected GW is a quasi-periodic frequency modulated signal
i.e., a chirp. In this article, we address the question of detecting an a
priori unknown GW chirp. We introduce a general chirp model and claim that it
includes all physically realistic GW chirps. We produce a finite grid of
template waveforms which samples the resulting set of possible chirps. If we
follow the classical approach (used for the detection of inspiralling binary
chirps, for instance), we would build a bank of quadrature matched filters
comparing the data to each of the templates of this grid. The detection would
then be achieved by thresholding the output, the maximum giving the individual
which best fits the data. In the present case, this exhaustive search is not
tractable because of the very large number of templates in the grid. We show
that the exhaustive search can be reformulated (using approximations) as a
pattern search in the time-frequency plane. This motivates an approximate but
feasible alternative solution which is clearly linked to the optimal one.
[abridged version of the abstract]Comment: 23 pages, 9 figures. Accepted for publication in Phys. Rev D Some
typos corrected and changes made according to referee's comment
Language control and parallel recovery of language in individuals with aphasia
Background: The causal basis of the different patterns of language recovery following stroke in bilingual speakers is not well understood. Our approach distinguishes the representation of language from the mechanisms involved in its control. Previous studies have suggested that difficulties in language control can explain selective aphasia in one language as well as pathological switching between languages. Here we test the hypothesis that difficulties in managing and resolving competition will also be observed in those who are equally impaired in both their languages even in the absence of pathological switching.
Aims: To examine difficulties in language control in bilingual individuals with parallel recovery in aphasia and to compare their performance on different types of conflict task.
Methods & procedures: Two right-handed, non-native English-speaking participants who showed parallel recovery of two languages after stroke and a group of non-native English-speaking, bilingual controls described a scene in English and in their first language and completed three explicit conflict tasks. Two of these were verbal conflict tasks: a lexical decision task in English, in which individuals distinguished English words from non-words, and a Stroop task, in English and in their first language. The third conflict task was a non-verbal flanker task.
Outcomes & Results: Both participants with aphasia were impaired in the picture description task in English and in their first language but showed different patterns of impairment on the conflict tasks. For the participant with left subcortical damage, conflict was abnormally high during the verbal tasks (lexical decision and Stroop) but not during the non-verbal flanker task. In contrast, for the participant with extensive left parietal damage, conflict was less abnormal during the Stroop task than the flanker or lexical decision task.
Conclusions: Our data reveal two distinct control impairments associated with parallel recovery. We stress the need to explore the precise nature of control problems and how control is implemented in order to develop fuller causal accounts of language recovery patterns in bilingual aphasia
- …