3,846 research outputs found

    The shape evolution of cometary nuclei via anisotropic mass loss

    Full text link
    Context. Breathtaking imagery recorded during the European Space Agency's Rosetta mission confirmed the bilobate nature of comet 67P/Churyumov-Gerasimenko's nucleus. Its peculiar appearance is not unique among comets. The majority of cometary cores imaged at high resolution exhibit a similar build. Various theories have been brought forward as to how cometary nuclei attain such peculiar shapes. Aims. We illustrate that anisotropic mass loss and local collapse of subsurface structures caused by non-uniform exposure of the nucleus to solar irradiation can transform initially spherical comet cores into bilobed ones. Methods. A mathematical framework to describe the changes in morphology resulting from non-uniform insolation during a nucleus' spin-orbit evolution is derived. The resulting partial differential equations that govern the change in the shape of a nucleus subject to mass loss and consequent collapse of depleted subsurface structures are solved analytically for simple insolation configurations and numerically for more realistic scenarios. Results. The here proposed mechanism is capable of explaining why a large fraction of periodic comets appear to have peanut-shaped cores and why light-curve amplitudes of comet nuclei are on average larger than those of typical main belt asteroids of the same size.Comment: 4 pages of the main text, 2 pages of appendix, 4 figure

    Coexistence of superconductivity and a spin density wave in pnictides: Gap symmetry and nodal lines

    Full text link
    We investigate the effect of a spin-density wave (SDW) on s±s_{\pm} superconductivity in Fe-based superconductors. We show that, contrary to the common wisdom, no nodes open at the new, reconnected Fermi surfaces when the hole and electron pockets fold down in the SDW state, despite the fact that the s±s_{\pm} gap changes sign between the two pockets. Instead, the order parameter preserves its sign along the newly formed Fermi surfaces. The familiar experimental signatures of an s±s_{\pm} symmetry are still preserved, although they appear in a mathematically different way. For a regular ss case (s++)s_{++}) the nodes do appear in the SDW state. This distinction suggests a novel simple way to experimentally separate an s±s_{\pm} state from a regular ss in the pnictides. We argue that recently published thermal conductivity data in the coexisting state are consistent with the s±,s_{\pm}, but not the s++s_{++} state

    Differential conductance of point contacts between an iron-based superconductor and a normal metal

    Full text link
    We present a theoretical description of the differential conductance of point contacts between a normal metal and a multi-band superconductor with extended s\pm pairing symmetry. We demonstrate that the interband impurity scattering broadens the coherent peak near the superconducting gap and significantly reduces its height even at relatively low scattering rates. This broadening is consistent with a number of recent experiments performed for both tunnel junctions and larger diffusive contacts. Our theory helps to better evaluate the energy gap of iron-based superconductors from point contact Andreev spectroscopy measurements.Comment: 5 pages, 4 figure

    Magnetic penetration depth in disordered iron-based superconductors

    Full text link
    We study the effect of disorder on the London penetration depth in iron-based superconductors. The theory is based on a two-band model with quasi-two-dimensional Fermi surfaces, which allows for the coexistence region in the phase diagram between magnetic and superconducting states in the presence of intraband and interband scattering. Within the quasiclassical approximation we derive and solve Eilenberger's equations, which include a weak external magnetic field, and provide analytical expressions for the penetration depth in the various limiting cases. A complete numerical analysis of the doping and temperature dependence of the London penetration depth reveals the crucial effect of disorder scattering, which is especially pronounced in the coexistence phase. The experimental implications of our results are discussed.Comment: 10 pages, 6 figure

    Phase sensitive noise in quantum dots under periodic perturbation

    Full text link
    We evaluate the ensemble averaged noise in a chaotic quantum dot subject to DC bias and a periodic perturbation of frequency Ω\Omega. The noise displays cusps at bias Vn=nΩ/eV_n=n\hbar\Omega/e that survive the average, even when the period of the perturbation is far shorter than the dwell time in the dot. These features are sensitive to the phase of the time-dependent scattering amplitudes of electrons to pass through the system.Comment: Published version. Improved discussion, with a few small typos correcte

    Pulsed thermal NDT in tables, figures and formulas

    Get PDF
    Several reviews and summary papers describing the history and the current status of pulsed thermal nondestructiv

    Compressibility of a 2D electron gas under microwave radiation

    Full text link
    Microwave irradiation of a two-dimensional electron gas (2DEG) produces a non-equilibrium distribution of electrons, and leads to oscillations in the dissipative part of the conductivity. We show that the same non-equilibrium electron distribution induces strong oscillations in the 2DEG compressibility measured by local probes. Local measurements of the compressibility are expected to provide information about the domain structure of the zero resistance state of a 2DEG under microwave radiation.Comment: v2: analysis of the wave-vector dependence of the compressibility added; discussion of the Hall conductivity removed (shifted to cond-mat/0409590 in a revised form
    corecore