75,363 research outputs found

    Anisotropic Compacts Stars on Paraboloidal Spacetime with Linear Equation of State

    Full text link
    New exact solutions of Einstein's field equations (EFEs) by assuming linear equation of state, pr=α(ρρR) p_r = \alpha (\rho - \rho_R) where pr p_r is the radial pressure and ρR \rho_R is the surface density, are obtained on the background of a paraboloidal spacetime. By assuming estimated mass and radius of strange star candidate 4U 1820-30, various physical and energy conditions are used for estimating the range of parameter α \alpha . The suitability of the model for describing pulsars like PSR J1903+327, Vela X-1, Her X-1 and SAX J1804.3658 has been explored and respective ranges of α \alpha , for which all physical and energy conditions are satisfied throughout the distribution, are obtained.Comment: 10 pages, 12 figures, 1 tabl

    Limits on the temporal variation of the fine structure constant, quark masses and strong interaction from quasar absorption spectra and atomic clock experiments

    Get PDF
    We perform calculations of the dependence of nuclear magnetic moments on quark masses and obtain limits on the variation of (mq/ΛQCD)(m_q/\Lambda_{QCD}) from recent measurements of hydrogen hyperfine (21 cm) and molecular rotational transitions in quasar absorption systems, atomic clock experiments with hyperfine transitions in H, Rb, Cs, Yb+^+, Hg+^+ and optical transition in Hg+^+. Experiments with Cd+^+, deuterium/hydrogen, molecular SF6_6 and Zeeman transitions in 3^3He/Xe are also discussed.Comment: 8 pages, 1 figure, uses revtex

    Anelastic dynamo models with variable electrical conductivity: an application to gas giants

    Full text link
    The observed surface dynamics of Jupiter and Saturn is dominated by a banded system of zonal winds. Their depth remains unclear but they are thought to be confined to the very outer envelopes where hydrogen remains molecular and the electrical conductivity is small. The dynamo maintaining the dipole-dominated magnetic fields of both gas giants likely operates in the deeper interior where hydrogen assumes a metallic state. Here, we present numerical simulations that attempt to model both the zonal winds and the interior dynamo action in an integrated approach. Using the anelastic version of the MHD code MagIC, we explore the effects of density stratification and radial electrical conductivity variation. The electrical conductivity is mostly assumed to remain constant in the thicker inner metallic region and it decays exponentially towards the outer boundary throughout the molecular envelope. Our results show that the combination of stronger density stratification and weaker conducting outer layer is essential for reconciling dipole dominated dynamo action and a fierce equatorial zonal jet. Previous simulations with homogeneous electrical conductivity show that both are merely exclusive, with solutions either having strong zonal winds and multipolar magnetic fields or weak zonal winds and dipole-dominated magnetic fields. All jets tend to be geostrophic and therefore reach right through the convective shell in our simulations. The particular setup explored here allows a strong equatorial jet to remain confined to the weaker conducting outer region where it does not interfere with the deeper seated dynamo action. The flanking mid to high latitude jets, on the other hand, have to remain faint to yield a strongly dipolar magnetic field. The fiercer jets on Jupiter and Saturn only seem compatible with the observed dipolar fields when they remain confined to a weaker conducting outer layer.Comment: 16 pages, 11 figures, 2 tables, submitted to PEP

    3D weak lensing with spin wavelets on the ball

    Get PDF
    We construct the spin flaglet transform, a wavelet transform to analyze spin signals in three dimensions. Spin flaglets can probe signal content localized simultaneously in space and frequency and, moreover, are separable so that their angular and radial properties can be controlled independently. They are particularly suited to analyzing of cosmological observations such as the weak gravitational lensing of galaxies. Such observations have a unique 3D geometrical setting since they are natively made on the sky, have spin angular symmetries, and are extended in the radial direction by additional distance or redshift information. Flaglets are constructed in the harmonic space defined by the Fourier-Laguerre transform, previously defined for scalar functions and extended here to signals with spin symmetries. Thanks to various sampling theorems, both the Fourier-Laguerre and flaglet transforms are theoretically exact when applied to bandlimited signals. In other words, in numerical computations the only loss of information is due to the finite representation of floating point numbers. We develop a 3D framework relating the weak lensing power spectrum to covariances of flaglet coefficients. We suggest that the resulting novel flaglet weak lensing estimator offers a powerful alternative to common 2D and 3D approaches to accurately capture cosmological information. While standard weak lensing analyses focus on either real or harmonic space representations (i.e., correlation functions or Fourier-Bessel power spectra, respectively), a wavelet approach inherits the advantages of both techniques, where both complicated sky coverage and uncertainties associated with the physical modeling of small scales can be handled effectively. Our codes to compute the Fourier-Laguerre and flaglet transforms are made publicly available.Comment: 24 pages, 4 figures, version accepted for publication in PR

    Doubly heavy hadrons and the domain of validity of doubly heavy diquark--anti-quark symmetry

    Get PDF
    In the limit of heavy quark masses going to infinity, a symmetry is known to emerge in QCD relating properties of hadrons with two heavy quarks to analogous states with one heavy anti-quark. A key question is whether the charm mass is heavy enough so that this symmetry is manifest in at least an approximate manner. The issue is crucial in attempting to understand the recent reports by the SELEX Collaboration of doubly charmed baryons. We argue on very general grounds that the charm quark mass is substantially too light for the symmetry to emerge automatically via colour coulombic interactions. However, the symmetry could emerge approximately depending on the dynamical details.Comment: 9 page
    corecore