30 research outputs found

    Geostatistical analysis of soil properties in a secondary tropical dry forest, St. Lucia, West Indies

    Full text link
    Spatial variability of soil properties directly influences forest growth. However, spatial variation in soil properties has not been studied within tropical dry forests. As such, it is unclear whether soil properties, like moisture and N availability, display spatial variation at scales similar to that of other ecosystems. To gain insight into this variation, we established a 56 × 56 m sampling grid in tropical dry forest on the Caribbean island of St. Lucia. Samples collected at 4-m intervals were analyzed for forest floor mass, soil texture, pH, organic C, net N mineralization, net nitrification and available P. Geostatistical procedures were used to determine spatial autocorrelation of the aforementioned properties and processes. Semivariogram parameters were used in a block kriging procedure to produce spatial maps of soil properties. At the scale of our study, most soil properties exhibited spatial autocorrelation at distances of 24 m or less. Varying degrees of similarity were found between patterns of forest floor mass, organic C, net N mineralization, net nitrification and available P. No similarity was found between soil texture or pH and other properties. Fine-scale spatial patterns of net N mineralization and net nitrification are likely driven by overstory litter inputs, rather than variation in soil texture and water availability.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43463/1/11104_2004_Article_BF00033939.pd

    Cross Adaptation - Heat and Cold Adaptation to Improve Physiological and Cellular Responses to Hypoxia

    Get PDF
    To prepare for extremes of heat, cold or low partial pressures of O2, humans can undertake a period of acclimation or acclimatization to induce environment specific adaptations e.g. heat acclimation (HA), cold acclimation (CA), or altitude training. Whilst these strategies are effective, they are not always feasible, due to logistical impracticalities. Cross adaptation is a term used to describe the phenomenon whereby alternative environmental interventions e.g. HA, or CA, may be a beneficial alternative to altitude interventions, providing physiological stress and inducing adaptations observable at altitude. HA can attenuate physiological strain at rest and during moderate intensity exercise at altitude via adaptations allied to improved oxygen delivery to metabolically active tissue, likely following increases in plasma volume and reductions in body temperature. CA appears to improve physiological responses to altitude by attenuating the autonomic response to altitude. While no cross acclimation-derived exercise performance/capacity data have been measured following CA, post-HA improvements in performance underpinned by aerobic metabolism, and therefore dependent on oxygen delivery at altitude, are likely. At a cellular level, heat shock protein responses to altitude are attenuated by prior HA suggesting that an attenuation of the cellular stress response and therefore a reduced disruption to homeostasis at altitude has occurred. This process is known as cross tolerance. The effects of CA on markers of cross tolerance is an area requiring further investigation. Because much of the evidence relating to cross adaptation to altitude has examined the benefits at moderate to high altitudes, future research examining responses at lower altitudes should be conducted given that these environments are more frequently visited by athletes and workers. Mechanistic work to identify the specific physiological and cellular pathways responsible for cross adaptation between heat and altitude, and between cold and altitude, is warranted, as is exploration of benefits across different populations and physical activity profiles

    Variabilidade espacial das propriedades físicas e químicas do solo em áreas intensamente cultivadas Spatial variability of physical and chemical properties of soil in intensively cultivated areas

    No full text
    Neste trabalho, avaliou-se a variabilidade espacial das propriedades físicas e químicas do solo, visando fornecer subsídios ao manejo localizado de insumos. Foram analisadas as variáveis químicas: P, MO, K, Ca, Mg, pH, CTC e V(%) e físicas: areia e argila. Coletaram-se amostras de solo em duas profundidades (0-0,2 e 0,6-0,8 m) situadas em malha irregular de amostragem na região de Monte Alto, num Argissolo Vermelho-Amarelo (PVA), sob diferentes manejos, perfazendo 88 pontos em área total de 1465 ha; e na região de Jaboticabal, em Latossolo Vermelho (LV) cultivado com cana-de-açúcar, perfazendo 128 pontos, em área total de 2597 ha. As propriedades químicas e físicas dos solos estudados apresentaram dependência espacial, com exceção da CTC na profundidade de 0,6-0,8 m para o solo LV; Ca e argila na profundidade de 0-0,2 m, e P, MO, K, Mg e argila na camada de 0,6-0,8 m, no solo PVA. As variáveis estudadas ajustaram-se aos modelos esférico e exponencial, e algumas apresentaram semivariograma sem estrutura definida. O solo PVA apresentou menor continuidade espacial das propriedades químicas e físicas, principalmente na profundidade 0,6-0,8 m, camada que sofre menor influência antrópica. O solo LV apresentou zonas mais homogêneas de fertilidade e granulometria.<br>The spatial variability of physical and chemical properties of soil were evaluated to provide subsidies for management of the agricultural input. The chemical variables: P, organic matter (OM), K, Ca, Mg, pH, CEC and base saturation (BS); and physical variables: sand and clay were analysed. Soil samples were collected at two depths (0-0.2 and 0.6-0.8 m) located at irregular mesh of sampling in the region of Monte Alto, in a Yellow-Red Podzol (Alfissolo) (PVA), under different managements, resulting in 88 points in 1465 ha of total area; and at the region of Jaboticabal in a Red Latosol (LV) cultivated with sugarcane, resulting in 128 points in 2597 ha of total area. The chemical and physical soil properties studied showed spatial dependence, except CEC in 0.6-0.8 m layer for LV; Ca and clay at 0-0.2 m layer and P, OM, K, Mg, sand and clay in 0.6-0.8 m layer for PVA. The chemical and physical variables studied were adjusted to spherical and exponential models and some of them showed semivariogram without defined structure. The PVA showed low spatial continuity of chemical and physical properties, mainly in 0.6-0.8 m layer, which suffers less antropic influence. The LV soil showed more homogenous zones of fertility and granulometric composition
    corecore