3,572 research outputs found

    Electron Acceleration by Multi-Island Coalescence

    Full text link
    Energetic electrons of up to tens of MeV are created during explosive phenomena in the solar corona. While many theoretical models consider magnetic reconnection as a possible way of generating energetic electrons, the precise roles of magnetic reconnection during acceleration and heating of electrons still remain unclear. Here we show from 2D particle-in-cell simulations that coalescence of magnetic islands that naturally form as a consequence of tearing mode instability and associated magnetic reconnection leads to efficient energization of electrons. The key process is the secondary magnetic reconnection at the merging points, or the `anti-reconnection', which is, in a sense, driven by the converging outflows from the initial magnetic reconnection regions. By following the trajectories of the most energetic electrons, we found a variety of different acceleration mechanisms but the energization at the anti-reconnection is found to be the most important process. We discuss possible applications to the energetic electrons observed in the solar flares. We anticipate our results to be a starting point for more sophisticated models of particle acceleration during the explosive energy release phenomena.Comment: 14 pages, 12 figures (degraded figure quality), 1 table. Accepted for publication in ApJ

    Bayesian Spatial Binary Regression for Label Fusion in Structural Neuroimaging

    Full text link
    Many analyses of neuroimaging data involve studying one or more regions of interest (ROIs) in a brain image. In order to do so, each ROI must first be identified. Since every brain is unique, the location, size, and shape of each ROI varies across subjects. Thus, each ROI in a brain image must either be manually identified or (semi-) automatically delineated, a task referred to as segmentation. Automatic segmentation often involves mapping a previously manually segmented image to a new brain image and propagating the labels to obtain an estimate of where each ROI is located in the new image. A more recent approach to this problem is to propagate labels from multiple manually segmented atlases and combine the results using a process known as label fusion. To date, most label fusion algorithms either employ voting procedures or impose prior structure and subsequently find the maximum a posteriori estimator (i.e., the posterior mode) through optimization. We propose using a fully Bayesian spatial regression model for label fusion that facilitates direct incorporation of covariate information while making accessible the entire posterior distribution. We discuss the implementation of our model via Markov chain Monte Carlo and illustrate the procedure through both simulation and application to segmentation of the hippocampus, an anatomical structure known to be associated with Alzheimer's disease.Comment: 24 pages, 10 figure

    `Island Surfing' Mechanism of Electron Acceleration During Magnetic Reconnection

    Full text link
    One of the key unresolved problems in the study of space plasmas is to explain the production of energetic electrons as magnetic field lines `reconnect' and release energy in a exposive manner. Recent observations suggest possible roles played by small scale magnetic islands in the reconnection region, but their precise roles and the exact mechanism of electron energization have remained unclear. Here we show that secondary islands generated in the reconnection region are indeed efficient electron accelerators. We found that, when electrons are trapped inside the islands, they are energized continuously by the reconnection electric field prevalent in the reconnection diffusion region. The size and the propagation speed of the secondary islands are similar to those of islands observed in the magnetotail containing energertic electrons.Comment: 5 pages, 4 figures, submitted to J. Geophys. Res

    Robust heterodimensional cycles in two-parameter unfolding of homoclinic tangencies

    Get PDF
    We consider CrC^r (r=3,,,ω)(r=3,\dots,\infty,\omega) diffeomorphisms with a generic homoclinic tangency to a hyperbolic periodic point, where this point has at least one complex (non-real) central multiplier and some explicit assumptions on central multipliers are satisfied so that the dynamics near the homoclinic tangency is not effectively one-dimensional. We prove that C1C^1-robust heterodimensional cycles of co-index one appear in any generic two-parameter CrC^r-unfolding of such a tangency. These heterodimensional cycles also have C1C^1-robust homoclinic tangencies

    Glueball mass from quantized knot solitons and gauge-invariant gluon mass

    Full text link
    We propose an approach which enables one to obtain simultaneously the glueball mass and the gluon mass in the gauge-invariant way to shed new light on the mass gap problem in Yang-Mills theory. First, we point out that the Faddeev (Skyrme--Faddeev-Niemi) model can be induced through the gauge-invariant vacuum condensate of mass dimension two from SU(2) Yang-Mills theory. Second, we obtain the glueball mass spectrum by performing the collective coordinate quantization of the topological knot soliton in the Faddeev model. Third, we demonstrate that a relationship between the glueball mass and the gluon mass is obtained, since the gauge-invariant gluon mass is also induced from the relevant vacuum condensate. Finally, we determine physical values of two parameters in the Faddeev model and give an estimate of the relevant vacuum condensation in Yang-Mills theory. Our results indicate that the Faddeev model can play the role of a low-energy effective theory of the quantum SU(2) Yang-Mills theory.Comment: 17 pages, 2 figures, 3 tables; a version accepted for publication in J. Phys. A: Math. Gen.; Sect. 2 and sect. 5 (old sect. 4) are modified. Sect. 4, Tables 1 and Table 3 are adde

    Global Optical Control of a Quantum Spin Chain

    Full text link
    Quantum processors which combine the long decoherence times of spin qubits together with fast optical manipulation of excitons have recently been the subject of several proposals. I show here that arbitrary single- and entangling two-qubit gates can be performed in a chain of perpetually coupled spin qubits solely by using laser pulses to excite higher lying states. It is also demonstrated that universal quantum computing is possible even if these pulses are applied {\it globally} to a chain; by employing a repeating pattern of four distinct qubit units the need for individual qubit addressing is removed. Some current experimental qubit systems would lend themselves to implementing this idea.Comment: 5 pages, 3 figure

    Phase transitions of a tethered surface model with a deficit angle term

    Full text link
    Nambu-Goto model is investigated by using the canonical Monte Carlo simulations on fixed connectivity surfaces of spherical topology. Three distinct phases are found: crumpled, tubular, and smooth. The crumpled and the tubular phases are smoothly connected, and the tubular and the smooth phases are connected by a discontinuous transition. The surface in the tubular phase forms an oblong and one-dimensional object similar to a one-dimensional linear subspace in the Euclidean three-dimensional space R^3. This indicates that the rotational symmetry inherent in the model is spontaneously broken in the tubular phase, and it is restored in the smooth and the crumpled phases.Comment: 6 pages with 6 figure

    The emergent integrated network structure of scientific research

    Full text link
    The practice of scientific research is often thought of as individuals and small teams striving for disciplinary advances. Yet as a whole, this endeavor more closely resembles a complex system of natural computation, in which information is obtained, generated, and disseminated more effectively than would be possible by individuals acting in isolation. Currently, the structure of this integrated and innovative landscape of scientific ideas is not well understood. Here we use tools from network science to map the landscape of interconnected research topics covered in the multidisciplinary journal PNAS since 2000. We construct networks in which nodes represent topics of study and edges give the degree to which topics occur in the same papers. The network displays small-world architecture, with dense connectivity within scientific clusters and sparse connectivity between clusters. Notably, clusters tend not to align with assigned article classifications, but instead contain topics from various disciplines. Using a temporal graph, we find that small-worldness has increased over time, suggesting growing efficiency and integration of ideas. Finally, we define a novel measure of interdisciplinarity, which is positively associated with PNAS's impact factor. Broadly, this work suggests that complex and dynamic patterns of knowledge emerge from scientific research, and that structures reflecting intellectual integration may be beneficial for obtaining scientific insight

    THE EFFECT OF COMPRESSION TIGHTS AND DURATION OF TESTING ON CONTINUOUS JUMPING MECHANICAL POWER

    Get PDF
    INTRODUCTION: In order to improve their performance, athletes seek advancements in technology, such as clothing. Manufacturers of compression tights, advertise that their product adds support to lower extremity musculature, thus may slow the onset of fatigue. Few scientific studies, however, have been conducted to identify how advancements in apparel influence an athlete’s performance (Kraemer et al., 1996). The purpose of the present study was to identify the effects of compression tights on mechanical power for continuous jumping. Secondly, the effect of duration on the mechanical power output by using Bosco’s method (1983) over 15, 30, 45, and 60 sec time-frames, as well as the interaction between apparel and duration
    corecore